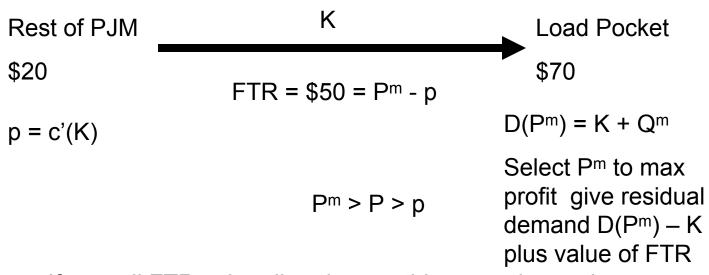
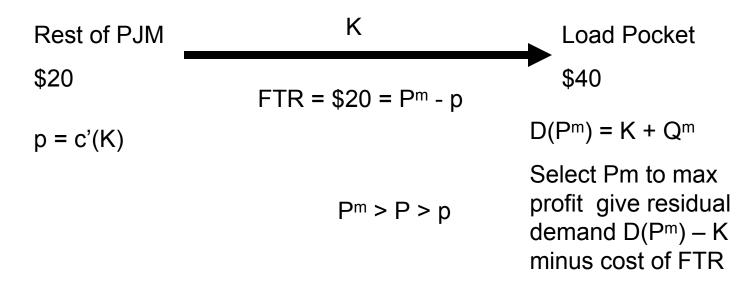

Transmission Rights and Market Power

Peter Cramton University of Maryland 26 January 2004 Joskow-Tirole, Rand J. 2000 Transmission Rights and Market Power

- FTRs pay holder difference in energy prices between congested and uncongested node
- FTRs motivated as hedge of congestion risk
- FTRs also impact incentive for market power
- Purchase FTR to hedge or Purchase FTR to enhance market power?


Two Node Network: Perfect Competition

Two Node Network: Monopoly in Load Pocket


Monopoly Buys FTRs

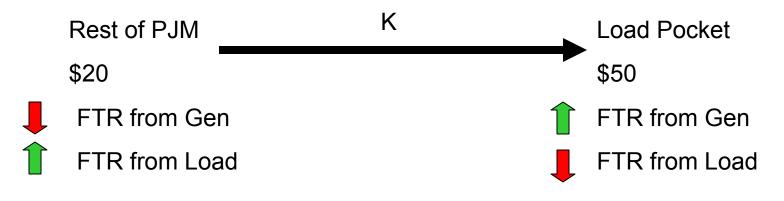
If own all FTRs, then line does nothing to reduce price. Monopoly selects P^m to max profit given full demand D(P^m)

 $Profit(P^m) = P^m(D(P^m) - K) - C(D(P^m) - K) + (P^m - p)K$

Monopoly Sells FTRs

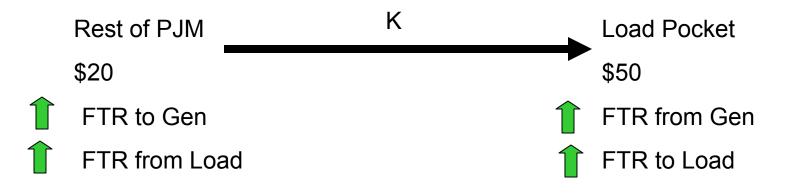
If sell FTRs, then less incentive to exercise market power.

If bundle FTR with capacity, then no incentive to exercise market power:


 $Profit(P^m) = P^m(D(P^m) - K) - C(D(P^m) - K) - (P^m - p)(D(P^m) - K)$

Summary: FTR Purchase

- FTR purchase creates extra incentive to expand output (demand)
 - FTR purchase creates extra incentive to curtail output (demand)


Summary: FTR Sale

FTR sale creates extra incentive to expand output (demand)

FTR sale creates extra incentive to curtail output (demand)

FTR consistent with hedging

- FTR purchase reduces exposure to volatile load pocket price
 - FTR sale reduces exposure to volatile load pocket price

FTR Policy

- FTR purchase/sale consistent with hedging is good
 - FTR to Gen out of load pocket from Load in pocket
 - FTR from Gen in load pocket to Load out of pocket
 - Also commits Gen in load pocket to operate efficiently
- FTR purchase/sale to enhance market power is bad (and anticompetitive)
 - FTR purchase by Gen in load pocket
 - FTR sale by Gen out of load pocket
- FTR construction/assignment matters
 - Summer/winter FTRs if congestion shifts
 - FTRs to exporting Gen from importing Load

PJM Application to Load Pockets (with Steve Stoft)

- Needed generation in load pockets asks to retire (insufficient revenues)
- Long term subsidy auction to identify least cost resources for adequate capacity
- Issues
 - Lumpy resources
 - Market power in load pocket
 - Competition between Line and Gen

Simple Subsidy Auction

- Resources (Line and Gen) bid required subsidy
- All bids below market clearing subsidy win and receive clearing price
- Favors cheap peakers, since ignores impact on energy price in pocket
 - More expensive Line may reduce total costs (subsidy + energy)

FTR Subsidy Auction

- Resources offer capacity bundled with FTR
 - FTR = max (0, Pg P) where
 - Pg = load pocket energy price
 - P = PJM energy price
- Line/Baseload rewarded for reducing energy price
- Reduced risk for Line and Baseload
- Eliminates incentive to exercise market power
- Problem: Peaker risk
 - FTR sale introduces unhedged risk for Peaker (Pg above P but less than MC of Peaker)

Capped FTR Subsidy Auction

- Resources offer capacity bundled with FTR -FTR = max (0, Pg - P) where
 - Pg = load pocket energy price
 - P = PJM energy price
 - Annual FTR payments capped at subsidy
- No downside risk for Peaker
- But market power problem reappears when resources are most scarce

FTR Subsidy Auction with Bottom Capped

- Resources offer capacity bundled with FTRs
 - $\text{ Top FTR} = \max (0, Pg \max(P, C))$
 - Bottom FTR = max $(0, \min(Pg, C) P)$ where
 - Pg = load pocket energy price
 - P = PJM energy price
 - C = MC of typical peaker
 - Annual Bottom FTR payments capped at subsidy
- No downside risk for Peaker
 - Top FTR is hedged by Peaker so no need to cap

Benefits of FTR Subsidy Auction with Bottom Capped

- Line and Gen compete on equal basis
- Lumpiness handled well
- Risk reduced for most (all?) resources
- Market power reduced
 - In energy market
 - In subsidy auction

Subsidy Auction Design

- Auction with externalities
 - Bidders care who wins
 - Line wins implies lower FTR cost
 - Peaker wins implies higher FTR cost
 - Both price and quantity discovery is important
 - Descending clock with QLine, QPeaker displayed
 - Package auction (bids depend on composition of winners)

Importance of FTRs and Forward Contracts

- Hedge risks (promote efficient investment)
- Mitigate market power (promote efficient spot markets)

Other Applications

Resource adequacy alternatives

• ACAP or ICAP markets

- Doesn't help with market power so add AMP

- Forward purchase of portfolio of energy options (Chao and Wilson 2003)
 - Must bid obligation assures resource adequacy
 - Contracting when supply more responsive
 - Adds demand response mitigating market power
 - Reduces dependence on AMP