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Goals for the Presentation

• Trying to be responsive to the mandate, “Tell us about artificial agent
models.”

• Will honor the request by deviating from a strict overview.

• Agent model, like many things, e.g., client-server architecture, have
multiple, conflicting definitions.

• No use agonizing over a definition. Let’s look at examples in hopes
of stimulating thought.
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Context/background

Four ways to study contexts of strategic interaction (CSIs or games):

1. A priori — classical game theory; analytic study and results; rational
choice theory presumed

2. In vivo — “games in the wild” Natural history of games? (needed)

3. In vitro — behavioral game theory; experimental economics; biology,
too

4. In silico — or algorithmic game theory; This is where agent models
come in.
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Algorithmic Game Theory

• What happens when well-defined algorithmic agents meet in CSIs?
Nash? Pareto?

• Why does what happens happen?

• How do smarts pay off (if at all)? Learning? What sorts of learning?
et cetera. . .

• Important, essential for fielding artificial agents in CSIs, as in e-
business

• My focus: Agents that learn (not merely adapt) in CSIs.
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Focus: Repeated Games, Repeated Interactions

• Supergame — a game composed of games (called subgames)

• Repeated game — a special kind of supergame: subgames all the
same; these are called stage games

• A lot of basic work: repeated games with 2×2 stage games.
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OK, Agents

• In part, a nifty programming idea. Think: rule-based expert systems
similarly motivated.

• In part, a response to ideas on distributed computing and problem
solving, and ideas on emergence.

• Also, large strain of motivation for ‘bots’; autonomous, often mobile,
agents doing work for us. Not central to our concern here.
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OK, Agents, con’t.

• Recommended: “WHY AGENTS? ON THE VARIED MOTIVATIONS
FOR AGENT COMPUTING IN THE SOCIAL SCIENCES” by Robert
Axtell, Brookings, Center on Social and Economic Dynamics,
Working Paper No. 17, November 2000

• Programming/modeling idea: agents are objects, you set them loose
in an environment and see what happens.
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From Axtell’s Paper

“. . . an agent based computational model becomes little more than:

program typical_agent_model;
initialize agents;
repeat:

agents_interact;
compute_statistics:

until done;
end.

Code fragment 3: Typical agent-oriented program.”

Well, yes and no.
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Distinctions and Approaches

• Contests. One on one, etc. Appropriate especially for identity-centric
agents.

• Tournaments. Strategy-centric. Axelrod’s IPD tournaments. Seminal
for agent-based modeling.

• ‘Ecological’ experiments. Aka: replicator dynamics. Most work
has been ‘mean field.’ Important findings: zones of attraction for
strategies. Beyond mean field replicator dynamics: a little correlation
and “Evolution does not respect modular rationality.” Fixation in
a population of strictly dominated strategies. Say it again: major
departures from standard economic models.
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Distinctions and Approaches

• Spatial games (and societies). Fancy CA (cellular automata)
systems. Focus of very much activity. Seminal and delightful work:
Growing Artificial Societies by Epstein & Axtell.

Has lead to development of software environments for (this sort of)
agent-based modeling. Ascape, in Java.

http://www.brook.edu/dybdocroot/es/dynamics/models/ascape/

• Network games. Work just getting underway. Natural for modeling
power systems, I would think.
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Agent-Based Modeling Environments

• Ascape (above). Axtell. Free from Brookings. Important commercial
player: NuTech Solutions, Inc. http://www.nutechsolutions.com/

• Swarm. Out of SFI. C++ library. Complaints about difficulty. Very
powerful.

• RePast. Java, open-source re-implementation of Swarm. Accessible
and powerful. http://repast.sourceforge.net/

• StarLogo, NetLogo. Turtles and patches. A great place to begin.
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Strategy-centric agents

• Strategy-centric versus identity-centric agents

• Strategy-centric: naked strategies, put out to play.

• Identity-centric: agents that acquire and modify, learn with strategies.
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2×2 Games

• Previous work: “Simple Reinforcement Learning Agents: Pareto
Beats Nash in an Algorithmic Game Theory Study” by Kimbrough
and Lu, forthcoming in Information Systems and e-Business
Management.

• Subsequent work (in NetLogo; in Java (thanks to Ann Kuo)).
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Learning Regime

1. Alternative (or consideration) set of strategies: A = {0, 1} for each
player.

2. Attractiveness estimation: linear updating rule for Ai, i ∈ A:
Ai

t+1 = Ai
t + α{ri

t −Ai
t}

NewEstimate = CurrentEstimate + StepSize{reward - CurrentEstimate}

3. Choice/exploration policies.

Softmax. ε–greedy
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Softmax

Pr(Ai
t) =

eAi
t/τ∑

j

eA
j
t/τ

τ −→ 0 as n −→∞
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Essential Findings

• When the numbers are right, agents tend to find Pareto outcomes,
even at the expense of Nash outcomes, in terms of the stage game.
(E.g. in Prisoner’s Dilemma, chicken)

• When Nash and Pareto outcomes coincide and multiple Nash,
agents tend (when the numbers are right) to find Pareto-optimal Nash
outcomes. (E.g., Stag Hunt)

• Results sensitive to actual payoffs (in contravention to classical game
theory)

• In any event, players tend to extract more wealth than would
otherwise be predicted.
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Example: Prisoner’s Dilemma

C D
C (3,3)** (0, 3+δ)*
D (3+δ, 0)* (δ, δ)#

Table 1: #=Nash; *=Pareto
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Summary of Results

ε−greedy action
selection

Softmax action
selection

CC CD DC DD δ CC CD DC DD
9422 218 183 177 0.05 9334 302 285 79
9036 399 388 150 0.5 9346 294 220 140
5691 738 678 2693 1 7537 954 1267 242
3506 179 275 6040 1.25 8203 542 994 261
1181 184 116 8519 1.5 7818 767 775 640
2 98 103 9797 1.75 4685 270 422 4623
97 114 91 9698 2 1820 217 220 7743
0 100 92 9808 2.5 0 77 117 9806
2 96 94 9808 2.95 0 90 114 9796
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WeB2003 Paper: Holt’s Cournot Game

• π(x, y) = (12− 0.5(x + y))x and similaryly for π(y, x)

• Competitive outcome: x + y = 12/0.5 = 24, 12 each for a profit each
of 0.

• Monopoly outcome: x + y = 12, 6 each for a profit each of 36.

• Cournot/Nash outcome: x + y = (2 · 12)/(3 · 0.5) = 16, 8 each for a
profit each of 32.

• Holt’s findings: human subjects produce slightly less than 8 each on
average.

18



Our Agents in the Holt/Cournot Supergame
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Atomic versus Molecular Strategies

• Heretofore (us and others): agents only learn strategies for the stage
game. Atomic strategies.

• These are m-0, memory of 0, strategies.

• What if they learned strategies defined over more than one
subgame? Molecular strategies.

• We looked at m-1, memory of 1 previous subgame, molecular
strategies.
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Molecular Learning Regime in 2 ×2 Games

1. Alternative (or consideration) set of strategies: A = {00, 01, 10, 11}
for each player. Form: ab: play a if last time counter-player played
0, play b if last time counter-player played 1. E.g., in Prisoner’s
Dilemma, 01 is TIT FOR TAT.

All else the same:

2. Attractiveness estimation: linear updating rule for Ai, i ∈ A:
Ai

t+1 = Ai
t + α{ri

t −Ai
t}

NewEstimate = CurrentEstimate + StepSize{reward - CurrentEstimate}

3. Choice/exploration policies. Softmax. ε–greedy
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Example: Standard Prisoner’s Dilemma

D C
D 1,1 5,0
C 0,5 3,3
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Essential Findings on 2 ×2 Games

As before, but the results are not very sensitive to the actual payoffs.

• Agents tend to find Pareto outcomes, even at the expense of Nash
outcomes, in terms of the stage game. (E.g. in Prisoner’s Dilemma,
chicken)

• When Nash and Pareto outcomes coincide and multiple Nash,
agents tend to find Pareto-optimal Nash outcomes. (E.g., Stag Hunt)

• Actual payoffs do matter (in contravention to classical game theory)

• In any event, players tend to extract much more wealth than would
otherwise be predicted.
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4 Molecular Strategies in Holt’s Cournot Game

1. G-TFT. If yt−1 > yt−2, then xt = xt−1 + δ; else xt = xt−1 − δ

2. BESTRESPONSE. xt = 12− 0.5yt−1.

3. S-TFT.

(a) If xt−1 < yt−1 and yt−2 ≤ yt−1, then xt = xt−1 + δ.
(b) If xt−1 > yt−1 or xt−2 = xt−1 = yt−1 = yt−2, then xt = xt−1 − δ.
(c) Else, xt = xt−1.

4. COPYCAT. xt = yt−1.
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Paired Strategies: Profits

G-TFT BESTRESPONSE S-TFT COPYCAT

G-TFT (36,36) (33.138,28.165) (36,36) (36,36)
BR (28.165, 33.138) (32,32) (32,32) (32,32)
S-TFT (36,36) (32,32) (36,36) (36,36)
CC (36,36) (32,32) (36,36) (23.166,23.166)
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Play with all 4 Strategies

What will happen if the agents engage all four strategies
simultaneously, under the above learning regime?

A = {G-TFT, BR, S-TFT, CC}

Results over 100 runs of 100,000 (rounds) plays, averaged over the
last 1000 rounds of play.

Average Profit
Softmax action selection (35.348, 35.323)
ε–greedy action selection (35.487, 35.507)

Two typical runs follow. . .
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Molecular Strategies with Holt’s Cournot Game: A
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Molecular Strategies with Holt’s Cournot Game: B
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From recent paper by Kimbrough, Lu, and Murphy

“Learning and Tacit Collusion by Artificial Agents in Cournot Duopoly
Games.”

Average Profit
Softmax strategy selection (35.243, 35.255)
ε−greedy strategy selection (35.172, 35.20)

Table 2: Profit realized by selection policy over the last 1000 of 100,000
plays, averaged over 100 runs; γ = 0; strategies 0–4 available

30



Conclusion (almost)

• Major reward from algorithmic game theory studies: results from
molecular strategies.

• Have to ask: If our rather dumb agents can figure out how to
get monopoly profits in a Cournot game, why believe the Cournot
analysis?

• Much remains to be done. Exciting stuff. See update of this last
work in paper by Kimbrough, Lu, and Murphy, “Learning and Tacit
Collusion by Artificial Agents in Cournot Duopoly Games.”
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One more thing

• Not unrelated: metaheuristics for solving constrained optimization
problems

• Mention in particular: two-population GA for constrained optimization
(by yours truly).

• Impressive results so far.

• Example. . .

32



Test Problem: Yuan

Objective function

min
x,y

z = (y1 − 1)2 + (y2 − 2)2 + (y3 − 1)2

− ln(y4 + 1) + (x1 − 2)2 + (x2 − 2)2 + (x3 − 3)2 (1)

Constraints:

y1 + y2 + y3 + x1 + x2 + x3 ≤ 5 (2)

y2
3 + x2

1 + x2
2 + x2

3 ≤ 5.5 (3)
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y1 + x1 ≤ 1.2 (4)

y2 + x2 ≤ 1.8 (5)

y3 + x3 ≤ 2.5 (6)

y4 + x1 ≤ 1.2 (7)

y2
2 + x2

2 ≤ 1.64 (8)

y2
3 + x2

3 ≤ 4.25 (9)

y2
2 + x2

3 ≤ 4.64 (10)

Variable bounds

x1, x2, x3 ≥ 0 (11)

y1, y2, y3, y4 ∈ {0, 1} (12)
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As reported . . . z∗ = 4.5796 at x = (0.2, 0.8, 1.908)T and y =
(1, 1, 0, 1)T .

With 2-pop GA (5,000 half-generations):

z+= 4.579588292413069. x1 = 0.199998178908325, x2 =
0.799999776184869, x3 = 1.90787728616851,

y1 = 1, y2 = 1, y3 = 0, y4 = 1.
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Summary Data
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Generations Infeas InF-out Fea-out z+ InF-med z σ2

z−Fea σ2

z−InF
0–99 -0.2824 3.5400 7.3000 5.222503 7.123 2.302 6.839

900–999 -0.2005 3.4100 6.6200 4.594130 6.577 0.840 8.928
1900–1999 -0.0453 3.3100 6.4000 4.581232 9.468 1.015 7.713
2900–2999 -0.0858 3.0400 6.4800 4.579938 5.926 0.426 3.302
3900–3999 -0.0501 2.7000 6.3300 4.579845 5.103 0.251 1.775
4900–4999 -0.0126 3.2900 4.8200 4.579653 5.245 0.253 0.948

Table 3: Yuan Results: Averages over 100 generations.
Infeasibility=−1·sum of absolute violations of constraints.
InF-out=number of feasible offspring from the infeasible population.
Fea-out=number of infeasible offspring from the infeasible population.
z+=best solution found in the feasible population. InF-med z=median
objective function value in the infeasible population. σ2

z−Fea=variance

of objective function values in the feasible population. σ2

z−InF=variance
of objective function values in the infeasible population.
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Other Uses of an EP/GA

Approximations to Shadow Prices: At generation 236, there appears
in the infeasible population a solution with z = 4.47002605609438,
much lower than z+, the best feasible solution found during the
run. This infeasible solution is at: x1 = 0.195462908809646, x2 =
0.795752247026746, x3 = 1.96768190221611, y1 = y2 = y4 = 1, y3 = 0.
All the variable values in this solution are close to their corresondents
in z+, except x3. Further, only one constraint is violated, (10), which
comes in at 4.871772068, instead of 4.64.

‘Model Busting,’ John Miller.
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That’s All Folks

$Id$
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