Compensation Rules for Climate Policy in the Electricity Sector

Dallas Burtraw Karen Palmer *Resources for the Future*

Atlantic Energy Group November 3, 2006

- Emission allowances represent enormous value and present strong incentives for rent seeking.
- Experience with Title IV notional adherence to a simple rule lessened rent seeking and contributed to success of program.
- Principle rather than contest of self-interest should guide climate policy.

Principle Should Guide Allocation (2)

Efficiency is one such bedrock principle.

- Overwhelming evidence is that free distribution has hidden cost.
 - Auction preferred when prices of goods and services differ from opportunity costs in:
 - Factor markets (e.g. taxes) (Goulder, Parry, others)
 - Product market (e.g. electricity regulation)(Burtraw and Palmer, Parry)
 - The allocation approach can amplify or diminish the distortion away from economic efficiency.
 - Rent seeking is another source of transaction cost.
- Most expansive environmental policy ever faced; free distribution would multiply the cost dramatically.
- Absent a public policy rationale, there is an economic case <u>against</u> free distribution of any emission allowances.

Annual Asset Value of Emission Allowances

NO_X SO₂ \$1.7 Billion \$2.7 Billion

Carbon 34% Reduction (Kyoto) Economy Wide \$450 Billion Carbon 6% Reduction in Electricity \$15-\$24 Billion

Principle Should Guide Allocation (3)

However, there are at least three reasons for free distribution:

- 1. Compensation
 - Government should "do no direct harm" (Schultze)
 - Free initial distribution conveys substantial compensation that varies in magnitude automatically with variation in cost of policy
 - Political buy-in (Buchanan, Tullock)
- 2. Competitiveness of regulated sector
 - In context of open economy within a region (Burtraw et al.) or globally (Fischer and Fox).
- 3. Technology policy

We focus only on #1, the compensation rationale

Principle Should Guide Allocation (4)

Premise:

- Goal is to maximize the portion of emission allowances that can be distributed in an efficient manner (auction).
- Direct free distribution to mitigate the direct harm to severely affected parties.

Maintained assumption, not questioned, but...

• Should worst off firm be compensated for 100% of lost value?

Organization of paper:

- 1. Establish measure of harm to producers, consumers
- 2. Identify strategy to achieve compensation goals at minimum cost

Findings (1)

<u>Key assumption</u>: Long-run costs to shareholders accrue only in competitive regions.

- Consumers realize greatest loss, but harm is diffuse.
- Measure of "deserved" compensation for producers depends on the yard-stick.
 - <u>Industry-level</u> cost is 1/8th of allowance value in competitive regions (1/16th nationally).
 - <u>At firm-level</u>, a revelation strategy invoking complete information/precise policy could achieve *full compensation* for 22% of allowance value, creating \$8 billion for winners.

Findings (2)

Compensation has a significant opportunity cost.

• Free allocation (100%) provides overcompensation of \$65 billion (1999\$).

Smart (blunt) rules provides cost savings. <u>At the</u> <u>federal level</u>:

- Allocation on fuel+tech requires 86% of allowances.
- Allocation on emission rates requires 65%
- The incremental opportunity cost of compensating for the last \$2.6 billion is \$26 billion at the federal level.

Findings (3)

Apportionment to regions with allocation to firms provides 'cost' savings.

- Apportionment of allowances to regions/states for application of blunt policies can achieve compensation at less than half the cost of a national allocation rule.
- With information about fuel & technology characteristics a (smart) blunt policy can achieve the goal for **39%** of allowance value, with overcompensation of \$19.5 billion.
- With information about firm-level emission rates a (smart) blunt policy can achieve the goal for **32%** of allowance value, with overcompensation of \$15 billion.

These estimates assume *full compensation* for worst-off firm.

Modeled: Moderate Climate Policy (w/ safety valve)

	2010	2015	2020	2025
EIA (2005b)				
Baseline				
Emissions (tons CO ₂)	2.88	3.07	3.31	3.65
NCEP Policy				
Emissions (tons CO ₂)	2.85	3.01	3.20	3.41
Allowance Price (\$/ton)	3.65	5.48	6.52	7.17
RFF Modeled Scenarios				
Baseline				
Emissions (tons CO ₂)	2.76	2.92	3.10	3.37
Moderate Policy				
Emissions (tons CO ₂)	2.67	2.83	3.01	3.19
Allowance Price (\$/ton)	3.91	5.89	7.00	7.70

Electricity Price Effects of Allowance Allocation Depends on Electricity Regulation

Sources of CO₂ Reductions Vary with Allocation Approach

Distribution of Costs to Firms in Competitive Regions Under NCEP/Bingaman National Proposal

RESOURCES

In competitive regions free allocation provides compensation to generators = 475% of cost

1) Allocation Using Simple Rules Based on Fuel, Technology

$$\min_{r_c, r_g, r_o} P^* \left[\sum_{f=1}^F r_c C_f + r_G G_f + r_O O_f \right] \quad \text{such that } \forall f \in F \colon P^* \left[r_c C_f + r_G G_f + r_O O_f \right] \ge \theta(V_f^{BL} - V_f^A)$$

 $P = discounted weighted avg CO_2 price$

F=firms

 $C_f G_f O_f = coal$, gas, oil generation (MWh)

 r_i = allocation rule for *i* = coal, gas, oil.

V = NPV of firm

 $0 < \theta < 1 =$ compensation target

1) Allocation Using Simple Rules Based on Fuel, Technology

	Complete Information		Incomplete Information Using Simple Rules					
			Fuel Type		Fuel + Clean +Gas Technology			
Units are percent and billion 1999\$	*Percent Free Allocation	Net Gain in Market Value	*Percent Free Allocation	Net Gain in Market Value	*Percent Free Allocation	Net Gain in Market Value		
Federal Approach	22%	7.51	100%	60.72	86%	51.51		
Regional/ State								
Approach								
ECAR	12%	1.74	27%	6.29	24%	5.63		
ERCOT	25%	0.385	45%	2.56	37%	1.65		
MAAC	34%	1.09	220%	15.61	54%	2.69		
MAIN	40%	3.00	76%	7.44	48%	4.00		
NY	40%	1.47	209%	5.96	130%	3.85		
NE	21%	0.832	125%	3.18	56%	1.63		
Aggregate Regions	23%	8.52	71%	41.04	39%	19.45		

2) Loss in Market Value versus Firm-Level Emission Rate

Nation:182 firms operating in competitive regions under upstream allocation/auction. MWh is operation forecast in 2010 in baseline. Also indicated are average emission rates in competitive regions for four classes of technology.

"Fit" line with allocation of 27% of allowance value leaves \$3 b in specific loss, \$11 b in net gain for industry. At 65% (full comp.) industry net gain is \$37b.

The Federal / State Question

Precedent:

- Centralized Allocation: SO₂
- Decentralized Allocation: NO_x, EU ETS

Effect of apportionment to states on cost?:

- <u>Adverse Selection:</u> "National winner" who is "local loser" gets compensated within a specific region (+)
- <u>Precision in Formula:</u> Regional formula takes advantage of heterogeneity among regions (-)

Regional Analysis: Loss in Market Value versus Emission Rate

Subset of 182 firms operating in the region.

Finding: Regional approach is more cost effective

182 firms operating in competitive regions.

	Federal				Regional				
Information	n/a	Complete	Incomplete			Complete	Incomplete		
Metric	Free	Firm	Facility- Level	Firm-Level Emission Rate		Firm	Facility- Level	Firm-Level Emission Rate	
		Value	Fuel+Tech	Fit	Full	Value	Fuel+Tech	Fit	Full
#Winners	180	182	180	101	177				
Gain (\$b)	65	8	52	14	37				
#Losers	2	0	2	81	5				
Loss (\$b)	~0	0	~0	3	~0				
Industry Net (\$b)	65	8	52	11	37	9	19	9	15
*% Free Allowance	100	22	86	27	65	23	39	23	32

*Percent of allowances in competitive regions.

THE FUTURE

Conclusion

- Consumers are most adversely affected, but harm is diffuse.
- Compensation of shareholders has significant opportunity costs.
- Best achieved through apportionment to regions.
- Roughly one-third of allowances in competitive regions fully compensate worst off firms, leaving \$15+billion in net gain for industry.

✤ Key questions:

- ✓ Is it true that shareholders of firms in regulated regions are kept whole in the long run?
- ✓ Do shareholders of worst-off firm deserve full compensation?

Method of Analysis: Detailed Electricity Market Simulation Model

- Iterative simulation model of equilibria in electricity markets with perfect foresight over 20 year time horizon
- Cost of Service, Marginal Cost, Time of Day pricing
- Supply curves composed of Model Plants for 20 regions and inter-regional trading (38 Model Plants in each region)
- 3 seasons, 4 time blocks, 3 customer classes
- Price-responsive demand and fuel modules
- Endogenous investment & retirement
- Endogenous NO_X, SO₂, CO₂, Hg emissions compliance
- Technology characteristics and cost data from EIA, EPA and some industry sources. Learning.
- Welfare Analysis (in electricity market accounting for government revenues)

Maintained Assumptions

- CAIR/CAMR. Only steam fossil plants install retrofit controls for conventional pollutants.
- Profits from inter-regional trades go to shareholders in regulated regions.
- Limited restructuring: Six regions (NY, NE, MAAC, MAIN, ECAR, ERCOT) with competitive prices and time of day pricing for industrial customers.
- Announced NSR settlements are included.
- State-level multi-pollutant and RPS rules are not included; some effects are modeled.
- All prices in 1999 real dollars.
- Firm-level assets are identified as of January 2004, including all currently built and in-construction facilities.

Stylized Determination of Electricity Price

• Total Cost (\$): capital + FOM + fuel + VOM + poll.allowances [Au] • Variable Cost Ordering (\$/MWh): fuel + VOM + poll.allowances • Price (\$/MWh): **Regulated Price =** Average Cost = (Total Cost ÷ Production) => Price [Au] > Price [Free] *Competitive Price* = Variable Cost > Price [Au] = Price [Free]

NCEP/Bingaman Climate Policy

- Economy wide cap on CO₂ emissions based on 2.4-2.8% decline in CO₂ intensity per year.
- \$7 (nominal) cap on CO₂ allowance price in 2010 increasing at 5% per year till 2025
- Full trading and banking of CO₂ allowances
- Small portion of allowances to be auctioned.
- NCEP proposal includes much more than CO₂ cap and trade.

Carbon Dioxide Reductions by Sector in Variants of NCEP Proposal (million metric tons)

Source: U.S. Energy Information Administration

Upstream Allocation Equivalent to Auction for Electricity Sector

Electricity Consumer Claims on Compensation

- Can be measured by changes in consumer surplus or electricity expenditures.
- Spearman rank correlation tests indicate that regions with higher average CO₂ emission rates tend to have larger consumer surplus change per MWh of electricity consumption.
- This correlation is stronger in regulated regions than in competitive regions.
- Impacts on prices and thus consumer surplus in competitive regions depend more on what's happening to the cost of the marginal generators than to the average generator.

Annual Compensation (2020) and Percent of Losses Under Auction that are Compensated with 100% Free Allocation

Year 2020 (Billion 1999\$)	Producers	Consumers		
Competitive	\$11.14*	\$-0.63		
Regions	(375%)	(-8%)		
Regulated Regions		\$10.09 (91%)		

*The estimate includes both producers who were losers and winners under upstream allocation.

Convergence Illustration

Electricity Price by Time Block, Summer 2005, RA region

Illustration: Effect of RPS on System Dispatch

RFF Haiku Electricity Model

Windows NT crashed.I am the Blue Screen of Death.No one hears your screams.

