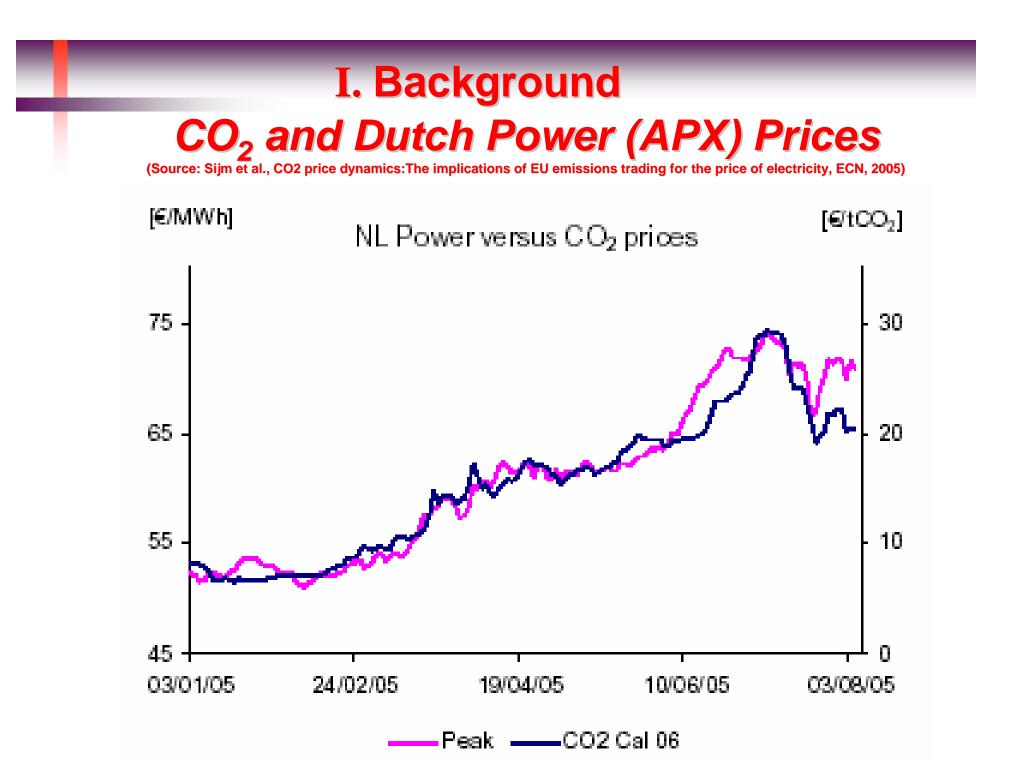
An Analysis of Long Run Power-Emissions Markets Interactions Under Alternative Emissions Allocation Rules

> **Benjamin F. Hobbs** *The Johns Hopkins University*


Jinye Zhao and Jong-Shi Pang Rennselaer Polytechnic Institute

Atlantic Energy Group, 3 Nov. 2006

Thanks to NSF, Energieonderzoek Centrum Nederlands for support

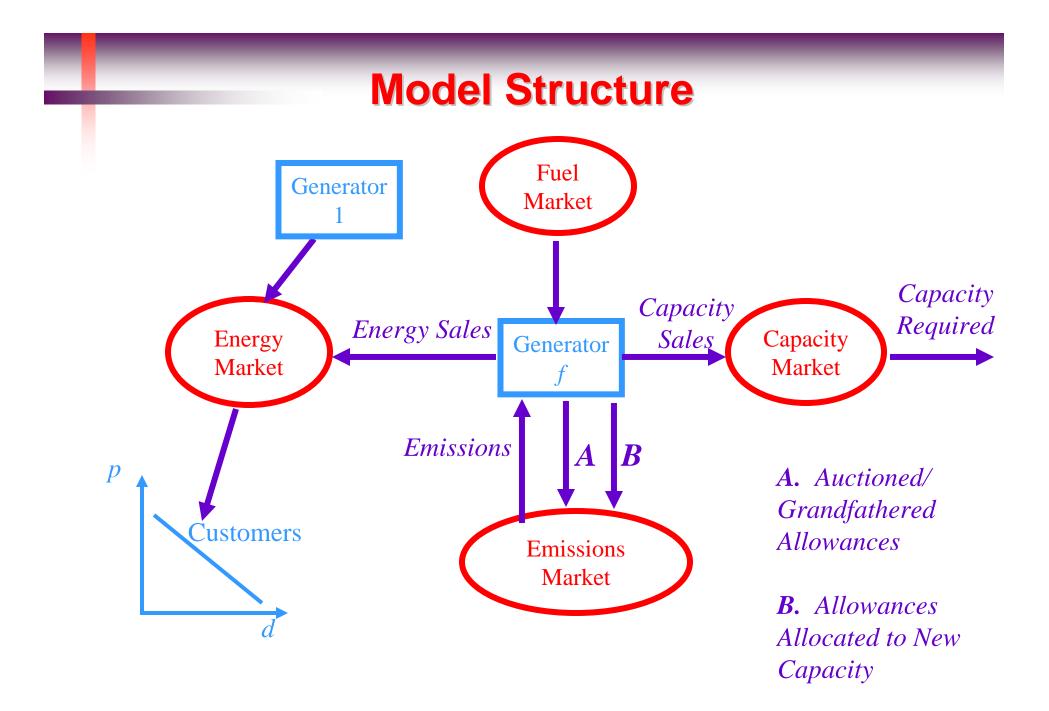
Outline

- I. Background
- **II. Model Structure & Computation Approach**
- **III. Application: CO₂ Emissions allowances** allocation
 - Effect of Grandfathering vs. giving allowances to new investment
 - Interaction with capacity markets

Long Run Energy & Emissions Market

- Alternative allocation schemes:
 - Auction
 - Grandfathering
 - Free allocation by formula
 - Mix and timing
- How might alternative allocation schemes affect market outcomes?
 - Generation mix
 - Costs
 - Consumer costs

Debate over Price Impacts of CO₂ Trading in EU


"However, if the expansion of the generation park (by incumbents or newcomers) is associated with a free allocation of emission allowances, then players will base their long-term investment decisions on the long-term marginal costs, including the costs of the CO₂ allowances, but by subtracting the subsidy that lowers the required mark-up for the fixed costs ... On balance, the power price will not be increased (ceteris paribus)."

*"*Explanation of CPB Vision on Relationship Emissions Trading - Power Prices," Aug. 2005, Netherlands Bureau for Economic Policy Analysis, Ministry of Economic Affairs

- Is this true in an industry with time varying demand, no storage, and a mix of technologies?
 - Will the least-cost generation mix still result, and all the allowances rent returned to consumers?

II. Model of Long Run Energy & Emissions Market

- Compare:
 - Complete grandfathering (or auction)
 - Mix of grandfathering & partial allocation to new investment
 - Lowers net investment cost
- Assume:
 - Free entry long run equilibrium
 - Spot market and long run contracts market arbitraged
 - No market power, no scale economies, no random generation outages
 - Alternative cases:
 - Capacity market
 - Unit commitment (min run) constraint

Long Run Energy & Emissions Market With emissions allowances allocation to new investment

Equilibrium problem: Find { p_t^* , pe^* , $pcap^*$, α_i^* , s_{it}^* , cap_i } that solve:

Profit Maximization, Generator *i*:

Given {*p*^{*t*}, *pe*^{*}, *pcap*^{*}, *α*^{*t*}}:

MAX $\Sigma_t(p_t - MC_i - pe^*E_i)s_{it} + (pcap^* + \alpha_i^* pe^* - F_i) cap_i$

s.t.: $0 \le s_{it} \le cap_i$, $\forall t$

Market clearing:

Energy Market: $\Sigma_{i} s_{it} = d_{t}(p_{t}^{*}), \forall t$ Emissions Market: $0 \ge \Sigma_{i,t} E_{i}s_{it} - \overline{E} \perp pe^{*} \ge 0$ Emissions Rights Allocation: $\Sigma_{i} \alpha_{i}^{*}cap_{i} + E_{GF} = \overline{E};$ $\alpha_{i}^{*}/\alpha_{1}^{*} = R_{i}, \forall i \ne 1$

Capacity Market: <u>CAP</u> $\leq \Sigma_i \operatorname{cap}_i \perp \operatorname{pcap}^* \geq \mathbf{0}_j$

NCP Statement

Given constants {<u>CAP</u>_i, MC_i, E_i, R_i, $\forall i$; <u>CAP</u>, \overline{E} , E_{GF}} and d_t(p_t^*),

find { p_t^* , $\forall t$; pe^* , $pcap^*$; α_i^* , cap_i^* , $\forall i$; s_{it}^* , μ_{it}^* , $\forall i,t$ } solving:----

For all generators *i*:

 $\mathbf{0} \leq \mathbf{s}_{it} \perp (\mathbf{p}_t - \mathbf{M}\mathbf{C}_i - \mathbf{p}\mathbf{e}^* \mathbf{E}_i) - \mu_{it} \leq \mathbf{0}, \qquad \forall t$

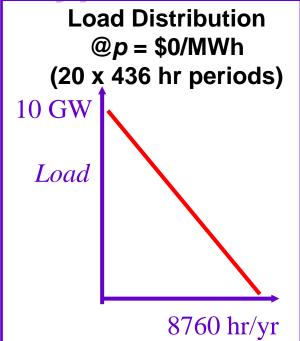
 $\mathbf{0} \leq \boldsymbol{cap}_i \perp (\boldsymbol{pcap}^* + \boldsymbol{\alpha}_i^* \boldsymbol{pe}^* - \boldsymbol{F}_i) + \boldsymbol{\Sigma}_t \boldsymbol{\mu}_{it} \leq \mathbf{0}$

 $\mathbf{0} \leq \mathbf{s}_{it} - \boldsymbol{cap}_i \quad \perp \mu_{it} \geq \mathbf{0}, \qquad \forall t$

Market clearing:

Energy Market: $\Sigma_i s_{it} = d_t(p_t^*), \forall t$ Emissions Market: $0 \ge \Sigma_{i,t} E_i s_{it} - \overline{E} \perp pe^* \ge 0$ Emissions Rights Allocation: $\Sigma_i \alpha_i^* cap_i + E_{GF} = \overline{E};$ $\alpha_i^* / \alpha_1^* = R_i, \forall i \ne 1$

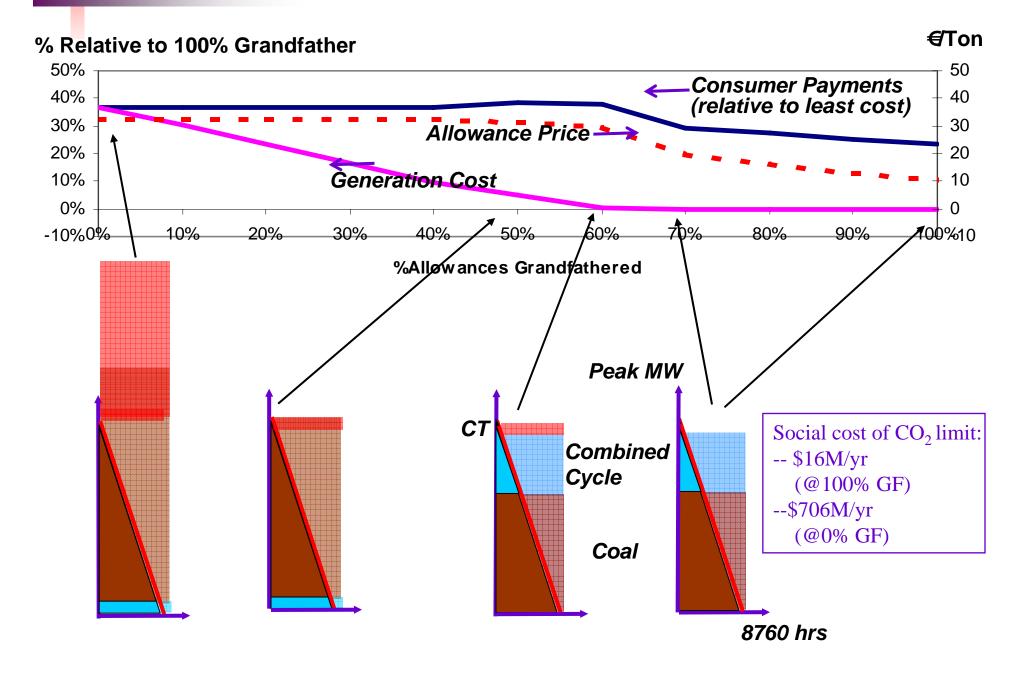
Capacity Market: <u>CAP</u> $\leq \Sigma_i \operatorname{cap}_i \perp \operatorname{pcap}^* \geq \mathbf{0}$

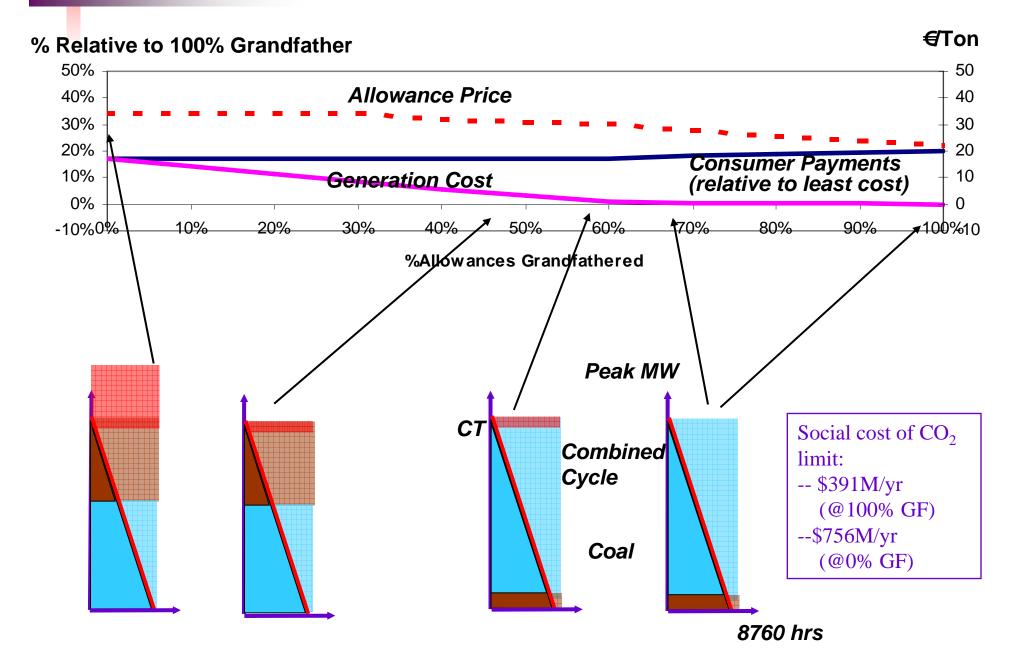

Note: More generally, $\Sigma_i \alpha_i^* (W_{cap} cap_i + \Sigma_t W_{si} s_{it}) + E_{GF} = E$ for the first Emissions Allocation condition, with constants W_{cap} , $W_{si} \ge 0$.

Model Properties and Solution

- Under mild conditions, a solution exists
- Computation
 - Rearrange and linearize NCP to obtain (a provably feasible) LCP
 - *α_i*cap_i* term requires linearization
 - Iterate until convergence; converged solution solves the original problem

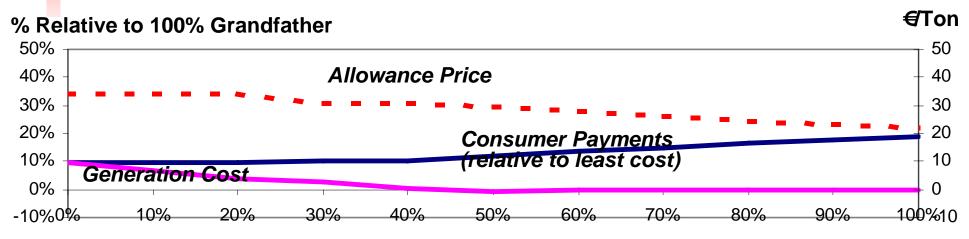
Example Analysis: 3 Gen Types

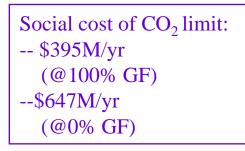

- Emissions limit: 20 or 40 MT/yr
 - 94%, 47% of unconstrained emissions
- Elastic demand
 - Price intercept of \$1000/MWh
 - $\Rightarrow \varepsilon = -0.11 @ P = 100/MWh$
- No capacity market
 - Sensitivity case: Capacity market (11 GW)
- Generator assumptions:


	Fixed			Allocation of Allowances
	Cost	Var Cost	CO2	to New Investment
Technology	(€⁄kW)	(€⁄MWh)	(Ton/MWh)	(relative) (1/MW)
Combustion Turbine	50	80	0.6	0.35
Combined Cycle (Gas)	75	40	0.35	0.35
Pulverized Coal	120	20	1	1

- Sensitivity case: Coal has 35% Min Run constraint

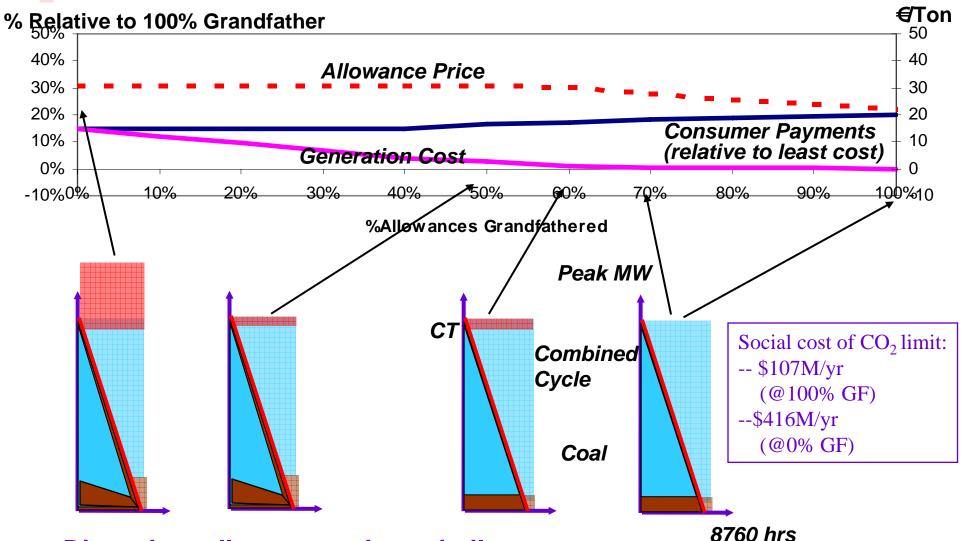
Results: 6% Emission Reduction


Results: 53% Emission Reduction


Effects of Giving Away Allowances

- Increases effective demand for allowances
 - so price ↑
 - distorts dispatch order
- Investment distortion
 - For %Grandfather > 60%: minor (slight changes in mix)
 - For %GF < 50%: major (overinvest--generation built to get allowances)
- Increases social cost of CO₂ control
 - At least doubles (under %GF = 0)
 - Distortion worse at <u>smaller</u> levels of CO₂ reduction
 - Power prices may not change; instead most of cost is loss of government allowance rent

Add Capacity Market @53% CO₂ Reduction


%Allowances Grandfathered

Effect of capacity market:

- Cost & investment distortion lessened
 - Occurs only for smaller %GF
- None on emissions allowances

With Coal MinRun Constraint & Lowest CO₂

- Distortion, allowance prices similar
- Cost of CO₂ compliance (@100%GF) less because baseline emissions lower (due to coal constraint)

Conclusions

- Original questions: "Will the least-cost generation mix still result, and all the allowances rent returned to consumers if allowances are given to new investors?"
 - Yes, investors compete away the allowance rents
 - But deadweight losses occur:
 - Inefficient dispatch orders
 - Changes in mix and amounts of investment
- Capacity markets dampen losses, but recognition of operating constraints does not
- Issue:
 - Efficiency: ought to grandfather or auction
 - Equity: unfair that only existing plants get rents?
- Next:
 - Other allocation rules
 - Wider range of generation and control technologies
 - Parameterize for realistic markets