
 1

                                                

A Reinforcement Learning Algorithm for Agent-Based Modeling of 

Investment in Electricity Markets 

 

Manuel L. Costa, Faculdade de Economia, Universidade do Porto, Portugal 

Fernando S. Oliveira*, Warwick Business School, UK 

 

 

Abstract: We develop a reinforcement-learning algorithm to model investment in electricity 

markets, by extending the n-armed bandit algorithm, and prove its equilibrium properties. We 

show that there is a stationary state of the investment game in which no additional investment 

or retirement of plants takes place. We model a spot electricity market together with 

investment decisions. Our experiments suggest that in the long-run electricity markets will 

tend to be short of capacity, we further analyze the evolution of the technological mix of the 

market. 

 

Keywords: Economics, Evolutionary computations, Investment analysis, Multi-agent systems, 

OR in energy, Simulation. 

 
* Operational Research and Information Systems Group, Warwick Business School, University of Warwick, 
Coventry CV4 7AL, UK, Email: Fernando.Oliveira@wbs.ac.uk
 

mailto:Fernando.Oliveira@wbs.ac.uk


 2

1. Introduction 

In liberalized electricity markets short term policies may have long-term impacts on the 

reshaping of market structure through investment and divestures. Electricity companies may 

use investments (or retirements) to adapt to the new environment or to gain market power 

(Larsen and Bunn, 1999). Therefore, within the new liberalized markets, and due to the 

decentralization of the long-term allocation decisions, the investment issue has gained 

importance.  

The modeling of investment in decentralized electricity markets is not liable to a closed-form 

solution as so far game theoretical models were not able to address this problems taking into 

account discontinuous decisions and fixed costs. For instance, Pineau and Murto (2003), 

Murphy and Smeers (2005) have developed Cournot based investment models, which so far 

were only able to consider continuous investment decisions, with no fixed costs and in which 

each agent invests in one technology only. However, these two aspects, discontinuity of the 

investment decision and the choice of technology portfolios by generators, are central features 

that have important implications on the behavior of agents and on the evolution of market 

structure.  

In fact, our idea is that the interaction of decentralized investment decisions by companies 

with the workings of electricity markets is an interesting question, both regarding the short 

and long-term evolution of markets as well as regarding the assessment of the impact of 

investment on the value of electricity plants.  

Our main contribution is a reinforcement-learning algorithm used to model investment in 

electricity markets, which extends the n-armed bandit algorithm. We proved the equilibrium 

properties of this algorithm. We show that there is a stationary state of the investment game in 

which no additional investment or retirement of plants takes place.  

Moreover, we analyze a model of electricity market which assumes that each agent can invest 

in several technologies, which are characterized by different marginal and fixed costs, and 

lumpy investment decisions. It is shown that under certain conditions the market converges in 

the long-run to a stationary state in which the marginal value of any possible investment (or 

retirement) is negative for every agent and no agent wishes to change his portfolio of plants.  
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This is an evolutionary model in the tradition of computational models of bounded rationality 

(e.g., Simon, 1972; Arthur, 1991) which attempt to model how companies and people behave 

in the real world as simple automata (see Hopcroft and Ullman, 1979, for an introduction to 

automata theory). In the modeling of electricity markets, agent-based computation has proved 

very successful in the study of market structure design. For example, Nicolaisen et al. (2001) 

and Bunn and Oliveira (2001) developed agent-based models to capture the detail of 

electricity market rules and learning issues, in order to model how boundedly rational agents 

behave in real markets. Agent-based simulation has been used to study electricity market 

design (Guerci et al., 2005; Chen et al., 2006) taking into account the reinforcement-learning 

process used by agents when interacting repeatedly with the environment (e.g., Nicolaisen et 

al., 2001; Bunn and Oliveira, 2001, 2003), to develop models of congestion in electricity 

markets using genetic algorithms (e.g., Son and Baldick, 2004).  

However, so far no agent-based model of learning has addressed the issue of investment, 

which represents a difficult problem due to the non-stationarity of the environment in which 

agents are required to learn. Our analysis differs and complements Bunn and Oliveira (2001, 

2003) as these authors look at market power exercised by short-term instruments, such as 

collusive pricing and capacity withholding. At the same time, in this paper we propose a new 

algorithm to model learning which extends the n-armed bandit algorithm to model the 

investment game.  

Next, in section 2 we develop a new reinforcement-learning algorithm. Then, in Section 3, we 

present the model used to capture the investment behavior in total and by technologies, and in 

Section 4 we illustrate the workings of the model. Section 5 concludes the paper. 

2. A Reinforcement Learning Algorithm for Investment Games  

Empirical studies have shown that models of bounded rationality predict better than the Nash 

equilibrium how people, organizations and markets behave, at least in the short run (e.g., Roth 

and Erev, 1995). Boundedly rational behavior is reasonably captured in reinforcement 

learning models (Sutton and Barto, 1998; Weiss, 1995). In models of reinforcement learning, 

agents learn by interacting with each other. Over time they learn to repeat the actions that give 

them the best rewards, i.e., they learn by positive reinforcement of profitable actions and 

negative reinforcement of unprofitable actions. 



Reinforcement learning has been used before to model electricity auctions: Bunn and Oliveira 

(2001) and Nicolaisen et al. (2001) developed different learning algorithms to model 

electricity trading. However, these studies focused primarily on short-term analyses, in 

particular raising the possibility of abuse of market power.  

2.1 The N-Armed Bandit Reinforcement Learning Algorithm 

In reinforcement learning, a very important model is the n-armed bandit (see Sutton and 

Barto, 1998) in which an agent decides how to play in the next iteration given the expected 

profit of each possible action. In this model a player needs to choose between n possible 

actions.  

Arthur (1991), using this type of algorithm to capture bounded rationality, found that 

computer automata could replicate human behavior, inasmuch as they may deviate from 

perfect rationality. Similarly, Roth and Erev (1995) used an n-armed bandit algorithm to 

capture the effect of experience and learning in human behavior. They showed that models of 

learning can predict better than the Nash equilibrium how humans behave (e.g., Sarin and 

Vahid, 2001). 

Moreover, an n-armed bandit algorithm has also been used to model electricity markets. 

Nicolaisen et al. (2001) simulate a wholesale electricity market model using agent-based 

computational learning. This model aims at analyzing the market power issue in electricity 

markets simulating the interaction between different generation companies, and capturing the 

players’ learning behavior, by using Roth and Erev’s (1995) reinforcement learning 

algorithm. Similarly, Bunn and Oliveira (2001) used an n-armed bandit algorithm to study the 

impact of the introduction of the new electricity trading arrangements in the England and 

Wales electricity market. 

We now present the n-armed bandit algorithm. Let ( )atπ  stand for the expected profit from 

an action a, at iteration t. Further, let 1
a
tu +  stand for the profit received, at iteration t+1, by 

executing action a, at iteration t+1. An agent computes an estimate of the true value of a at 

iteration t+1, π t+1(a), using equation 2.1, with the initial value ( ) a
tt ua 11 == =π . 

( ) ( ) ( )( )auaa t
a
ttt παππ −+= ++ 11 , .   (2.1) a∀
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Equation 2.1 represents an exponential smoothing of past rewards with a weight-factorα , the 

learning rate, such that 10 ≤≤α . This is an exogenous parameter that characterizes the 

learning process used by a given firm. By repeating the same experiment over and over again, 

as the number of iterations converges to infinite the true value of action (a) is learned, 

including the potential value of the project, within the model analyzed.   

In the context of investment, the learning rate α  represents the speed of convergence to the 

approximate ‘correct’ value, it is a parameter used by each firm to filter the relevant 

information for decision making. This is especially important in this model because the 

market does not stand still in the process, as the value associated with each investment 

changes over time due to demand uncertainty and, most importantly, due to competitors’ 

behaviour. We are in the presence of a non-negligible degree of non-reversibility of decisions 

and so the agents need to be very demanding regarding selecting the relevant information 

used in the decision process. By setting a very low α  the firms discount more the information 

received, filtering noise, and taking a longer time to collect enough information to invest.  

However, this algorithm has an unsatisfactory behavior when modeling investment in agent 

based models. The problem arises from the fact that by choosing an action an agent has a non-

negligible effect on his environment and expected payoffs. Whereas in a standard n-armed 

bandit game the choices of the player do not change the rewards received, the same is not true 

in an investment game.  

2.2 A Reinforcement Learning Algorithm to Model Investment 

If a firm invests in a nuclear electricity plant, this investment will most likely have an impact 

on prices and on the rewards of future investments. Therefore, in order to model investment 

as an evolutionary process we are required to develop a new reinforcement-learning 

algorithm. This is so for two reasons. First, structural changes and the expectation of the 

market value of an action, and second, the related aspect of expectations of future market 

prices.   

As to the first reason, whereas in the n-armed bandit model in order to receive information an 

agent needs to act, in the case of the investment game an agent can wait (just sell in the 

energy market as usual) collecting additional information to evaluate a given investment 
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opportunity. This process of observation is crucial as the agent learns about the investment 

opportunity taking into account the current market behavior. 

The important problem an agent needs to solve is to decide when to stop observing the 

environment by choosing one of the possible actions. According to the model properties of 

the n-armed bandit algorithm in equation 2.1, in order to allow for an agent to learn the true 

value of an action we need to give the algorithm time to converge.  

Therefore, a way to extend the n-armed bandit algorithm to model actions that lead to a 

structural change is to introduce a mechanism that controls for equilibrium, so that an agent 

only executes an action that may lead to a structural change after equilibrium occurs.  

Let us now see how the n-armed bandit algorithm may be extended in order to deal with 

structural changes. Following the n-armed bandit algorithm, at iteration t+1 an agent 

estimates the value of an investment opportunity a, π t+1(a), through equation 2.1. We control 

for the equilibrium of the learning algorithm using equation 2.2, which smoothes the changes 

in π t+1(a), and in which ( ) ( ) ( )aaa ttt 1−−=Δ πππ . Let Wt(a) stand for the estimate of the 

change in expected value of action a. The variable Wt(a) enables the detection of structural 

changes in the value of assets. The initial value ( ) a
tt uaW 11 == = . 

( ) ( ) ( ) ( )[ aWaaWaW tttt −Δ+=+ ]πα1 , a∀ .   (2.2) 

We further decide when the estimation of the value of a given action is correct enough in 

order for a new action to be taken. In the case of the investment problem, we need to estimate 

the value of the investment close enough in order for the firm to choose this investment when 

the value is positive. 

Let δ  represent the maximum valuation error, an exogenous parameter (close to zero) 

delimiting the neighborhood within which an estimated value is considered to be correct, as 

described by equation 2.3, in which u represents the true value we are estimating. In 

economics terms δ  defines the level of certainty required by a firm before investing or 

retiring a given asset. In a standard discounted cash flow analysis a firm invests if π t(a) is 

positive. However, it is well known from the real options literature that there is a value in 

delaying investment, a fact captured by this decision rule that by delaying investment a firm 
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receives more information, thus allowing for a better valuation. In this case, the lower δ  the 

more conservative is a firm (as it demands better forecasts before investing). 

δ
π

≤
−
u

u t           (2.3) 

Moreover, it can be shown, from equation 2.1, that after t iterations the learned value of π t is 

( )( )t
t u απ −−= 11 , which implies that as t converges to infinity the estimated value of the 

action converges to the correct value (u), as 1<α . Replacing π t into equation 2.3 we derive 

equation 2.4, which represents an alternative model to test for convergence of the agent’s 

estimate of the value of action a.  

( ) δα ≤− t1           (2.4) 

From equations 2.1-2.4 we can now derive a condition under which the estimated value of an 

action a is correctly evaluated for a given market structure. The investment rule is simple: 

invest if the estimated value of the investment is positive and if equation 2.5 is verified. This 

equation shows that the estimated change in the value of the investment needs to be close to 

zero (and that the lower the learning rate the closer to zero the required percentage change is 

required to be) in order for a firm to approximate the value of an action a, for a given action a. 

Let us explain how this equation comes about. 

δα
π

2≤
t

tW
          (2.5) 

If the process is stationary, i.e., , then the change in the expected value of the profit, at 

iteration t, is equal to . This is shown by a simple iterative application of 

equation 2.1. From equation 2.1 we know that 

uu a
t =+1

( ) ααπ t
t u −=Δ 1

( )t
a
ttt u παππ −+= ++ 11 . Since the process is 

stationary we have ( ttt u )παππ −=−+1 . The value of π t is equal to the sum of the t terms of 

a geometric progression, ( )t
t u )1(1 απ −−= . Therefore, we have ( )[ ]t

t uu )1(1 ααπ −−−=Δ , 

and hence .  ( ) ααπ t
t u −=Δ 1
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Then, by replacing tπΔ  in equation 2.2 we get ( )[ ]t
t

tt WuWW −−+=+ ααα 11 . Next, through 

an iterative process of replacement of Wt in Wt+1, Wt+2, …, we get . ( )tt tuW αα −= 12

Moreover, we can show that in a stationary process, given enough time, i.e., as  , it 

will converge to the true value. That is, equation 2.1 can estimate the correct value of 

+∞→T

π :  

( )( ) uuj
T

j

j
Tt

T
ttt =−=−++−+−+ ∑

=

−
−−−

1

1
2

2
1 1)1(...)1()1( ααπαπαπαπ . The proof is by 

induction. From equation 2.1 we know that 1)1( −−+= tt u πααπ . Therefore, for j=1 we have 

1111 )1(2)1()1()1( −−−− −+=−+−+=−+ ttttt uu πααπαπααπαπ . Similarly, for j =2 we have  

3
3

2
2

1 )1(3)1(2)1()1( −−− −+−+=−+−+ tttt uu πααααπαπαπ , and for j = 3 we have 

. 

Hence, we can generalize for j = T for 

4
42

3
3

2
2

1 )1(4)1(3)1(2)1()1()1( −−−− −+−+−+=−+−+−+ ttttt uuu πααααααπαπαπαπ

( )( ) ( )( ) Tt
T

T

j

j
Tt

T
ttt Tuj −

=

−
−−− −++−=−++−+−+ ∑ παααπαπαπαπ 111)1(...)1()1(

1

1
2

2
1 . 

As  we have:  ( )( ) 011lim =−+ −+∞→ Tt
T

T
T πα

( )( )∑
=

−
−−− −=−++−+−+

T

j

j
Tt

T
ttt uj

1

1
2

2
1 1)1(...)1()1( ααπαπαπαπ . Finally, we have  

( )( ) ( )( )∑∑
=

−

+∞→
=

−

+∞→
=−=−

T

j

j

T

T

j

j

T
ujuuj

1

1

1

1 1lim1lim αααα . 

Therefore, the ratio between the change in the forecast and the current forecast as t increases 

to infinity converges to equation 2.6. As ( )tt α−1  converges to zero, then equation 2.6 will 

eventually converge to zero as well.   

( t

t

t t
W

αα
π

−= 12 ) .           (2.6) 

Now, by multiplying both terms of equation 2.4 by  we get , and 

therefore we show that the equilibrium condition for the extended n-armed bandit algorithm is 

2αt ( ) δααα 22 1 tt t ≤−
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δα
π

2t
W

t

t ≤   (the absolute value is used so that the condition can be applied to both positive 

or negative expected values). Furthermore, in this case, if δα
π

2≤
t

tW
 then the algorithm also 

converges, as equation 2.5 is more demanding than equation 2.6. In fact, equation 2.5 has the 

advantage of being independent of t, as the number of iterations during which the 

environment is stationary is difficult to control in an agent-based environment. 

As referred to above, a second problem with the straightforward use of the n-armed bandit 

algorithm is that in order to model investment we need to forecast the impact of a marginal 

investment on the current price. As the n-armed bandit algorithm only looks at past rewards 

we cannot use them to forecast the future, as an investment may lead to a structural change in 

the stream of profits received by an agent. Therefore, we need to develop a mechanism to 

estimate the impact of an investment on the electricity prices. 

In the following section, this price effect is incorporated. We propose an evolutionary model 

that aims to provide a framework to analyze investment in electricity markets, explaining how 

to compute the impact of an investment on electricity prices and the value of a plant.  

3. An Evolutionary Model for Electricity Markets 

In this section we present a model of evolutionary electricity markets. We start by describing 

the basic assumptions of the model and then we proceed by describing the decision rule used 

by agents when considering investing. In particular, in this section we also derive the main 

analytical results of our analysis: section 3.3 describes the computation of the operational 

profit and section 3.4 introduces the concept of marginal value of an electricity plant. Finally, 

we present a definition of the concept of stationary state. 

3.1 Basic Assumptions of the Evolutionary Model 

The important elements of the model are the following:  

(1) Three different technologies j= b, s, p, that is, baseload, shoulder and peak, 

respectively.  
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(2) Each agent i can own several plants of the same technology and can hold a 

portfolio of several technologies that change over time.  

(3) Each agent aims to maximize his long term operational profit.  

(4) We model the behavior of the agents during a typical year (typical as regards the 

load duration curve). We consider demand for each hour of the day, therefore modeling the 

load duration curve for each hour. In the case presented in the example in section 4 we 

assume an inelastic demand for each hour. (As electricity is not storable, the period-demand 

function coincides with the short-run demand curve, that is, buyers can not speculate in the 

short term. In fact, anticipation or delay of demand in the presence of certain given and 

expected prices happens in reality only up to a reduced extent, given prevailing pricing 

practices for the final consumer of electricity.) The model can be used exactly in the same 

way if we consider a linear or non-linear demand function in which demand is a function of 

price. This is a very strong point in favor of the reinforcement learning model here presented, 

as Cournot models such as Pineau and Murto (2003), Murphy and Smeers (2005) can only be 

used if demand is elastic (and the results of these Cournot models are very sensitive to 

elasticity of demand – a parameter which is very hard to estimate properly). 

(5) The market clearing price follows from a single-clearing mechanism, in which 

there is only one price per iteration. Therefore, all plants (e.g., nuclear, gas or oil), selling at a 

given iteration, receive the same price for their electricity. This represents a market for 

electricity modeled for each trading period (in this case an hour). This spot market determines 

electricity prices endogenously.  

(6) Changes in capacity of each agent occur by investment and retirement. Investment 

is carried out by existing firms and entry of new agents is not modeled. A decision of 

investment or retirement is considered at each time period of the model (in this paper modeled 

as an hour). The investment or retirement is triggered under some conditions that we analyze 

next.  

(7) The agents are modeled as adaptive automata, following the marginal profit rule, 

explained in section 3.2.  



Moreover, we take the following assumptions: (1) Within each technology every plant has the 

same technical features, i.e., the same marginal and fixed costs. (2) Allocation rule: when the 

market price equals the marginal cost of an agent’s portfolio, his generation from the marginal 

plants is directly proportional to his share in the total capacity in that technology. (3) The 

electricity market price at iteration t, , is computed using equation 3.1: tP

Otherwise
KKKD

KKD
KD

if
if
if

else
else

P
mg
mg
mg

P
ptstbtt

stbtt

btt

p

s

b

t 0
0

0

≤−−−
≤−−

≤−

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=      (3.1) 

The computation of the clearing price is a function of the demand for that specific iteration 

(Dt) and of the total available capacity for baseload (Kbt), shoulder (Kst) and peak (Kpt) plants, 

at iteration t. The other variables defining the clearing price are the price cap ( P ) set and 

enforced by the regulator, and the marginal costs for baseload (mgb), shoulder (mgs) and peak 

(mgp) plants.  

In this paper we address the issue of the evolution of investment of firms in liberalized 

electricity markets in which they hold a portfolio of several technologies. Our model 

considers the existence of an ongoing single-clearing market, in which there is only one price 

for the electricity generated at a given hour of the day, and in which there is a wholesale pool 

in which prices are equal to marginal costs (or to the price cap), as in Stoft (2003). This is an 

ongoing market for transactions of electricity that is best seen as a Bertrand game in which 

firms compete through price. As proved in Bunn and Oliveira (2003) in the Bertrand 

equilibrium when there is excessive capacity price equals marginal cost, otherwise there is 

potential for players to charge extremely high prices (and, therefore, there is a need for a price 

cap). 

3.2 Investment, Retirement and Long-Term Equilibria 

An agent’s investment and retirement behavior is a function of his initial portfolio. For any 

given portfolio, he computes the profit he gets from each one of his plants and how much his 

profit would increase if he shut down some of his current plants or invest in new ones. 

Moreover, in order to choose if he is investing or divesting in a given technology, an agent 

computes the marginal profit associated with an investment or retirement. Therefore, in the 
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model developed in this paper we have an equation describing the evolution of the number of 

generation units of each firm and technology. Let Gij(t), Iij(t) and Sij(t) stand, respectively, for 

the total number of plants, the number of plants set-up at iteration t, and the number of plants 

shut-down at iteration t. 

That is, for any technology j and agent i, the number of plants at iteration t, , is 

computed using equation 3.2,  

)(tGij

 12

)( ) (∑ −+=
t

ijijijij tStIGtG )()(0)(        (3.2) 

For each type of plant and for each agent, when considering investing an agent uses the 

following decision rule:  

1. He computes the marginal value of a given investment or retirement during a typical 

year.  

2. Only investment or retirement opportunities with expected positive marginal 

contributions are considered. An agent invests (retires) a plant in a given technology if 

the cumulative profit of the post-investment (post-retirement) portfolio as a whole is 

higher than the current profit of the portfolio as a whole. 

This decision rule is an application of the discounted cash flow approach in which the value 

of a project depends on all the additional cash flows that follow from the project (Brealey and 

Myers, 1991, p. 96).  

However, it is well known that this simple rule may be incomplete if the firm can delay the 

decision. The real options approach to project valuation shows that the option to delay a 

decision can have a positive value (e.g., MacDonald and Siegle 1986; Pindyck 1991; Dixit 

1992). This positive value of the option to delay a decision can be obtained when by delaying 

the decision the firm will receive information that improve its valuation of the project (e.g., 

Dyson and Oliveira 2007). This is the explanation for equations 2.3-2.6. We show that by 

using reinforcement learning the firm needs to delay the execution of an action, even when its 

expected value is positive, in order to collect enough information to ensure that the estimated 

value is correct (as there may be value in this option to delay). 



We consider an equilibrium or stationary state to be reached when the marginal value of an 

investment and retirement is negative for every agent, i.e., when there is no incentive for 

investing or closing a plant.  

Let  and  represent, respectively, agent i’s current operational profit and his 

operational profit after an investment or retirement in technology j. A given state of the 

industry represents a stationary state if for every agent i and possible investment or 

retirement in technology j: . 

iOP j
iOP +

j
ii OPOP +≥

3.3 Energy Trading and Operational Profit  

In this section, we analyze how to compute the revenue and the operational profit of each 

agent.   

Let , ,  represent the quantities sold by an agent i of baseload, shoulder 

and peak plants at iteration t. Moreover, generation is a function of residual demand RDjt, i.e., 

of the demand left after taking out the generation of the plants with lower marginal cost in the 

system. The other variables influencing the generation quantities of each agent i are: the 

capacity owned by agent i of baseload kbi(t), shoulder ksi(t) and peak kpi(t) plants, at iteration t.  

)(tQbi )(tQsi )(tQpi

The actual quantities supplied by agent i, in iteration t, are calculated using the system of 

equations 3.3. Equations 3.3 show the following: (a) if mgh<Pt the residual demand for 

technology h is positive; hence, every available plant of technology h will be called; (b) if 

mgh>Pt the market clearing price is equal to the marginal cost of a cheaper technology, which 

is not being fully used, therefore the quantity supplied from generation technology h is zero; 

(c) if mgh=Pt then h is the marginal technology. Assuming that the allocation rule holds, the 

quantity generated from h at iteration t is a direct function of jt
jt

ji RD
K

tk )(
 and, since generation 

is not negative, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 0,

)(
max)( jt

jt

ji
ji RD

K
tk

tQ .  
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( )

⎪
⎪
⎪
⎪
⎪
⎪
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⎪
⎪
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⎪
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⎪
⎪
⎪
⎪
⎪

⎨

⎧
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≤−−−
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⎠

⎞
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⎝
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≤−−
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⎞
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⎛
−==

≤−

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

OtherwisetktQtktQtktQ

KKKD

KKD
K

tk
tQtktQtktQ

KKD

tQKD
K

tk
tQtktQ

KD

QQD
K

tk
tQ

pipisisibibi

ptstbtt

stbtt
pt

pi
pisisibibi

stbtt

pibtt
st

si
sibibi

btt

pisit
bt

bi
bi

                 ,)()(),()(),()(

 0 if                                                                            

  ,0,
)(

max)(),()(),()(

 0 if                                                                      

   ,0)(,0,
)(

max)(),()(

0  if                                                             

 ,0,0,
)(

max)(

 (3.3) 

In order to compute the operational profit of each agent, we split the net revenue by 

technology. Hence, for an agent i, the total net revenue for a given technology j (baseload, 

shoulder and peak), at iteration t, is represented as Rji(t) and is computed by equation 3.4. 

( ) )()( tQmgPtR jijtji −=         (3.4) 

Moreover, we also need to compute fixed costs, which represent all the costs of keeping a 

plant running and are not related to the generation of a given plant. Total fixed costs for an 

agent i are the sum of the fixed costs for each technology. We have considered the fixed costs 

of each type of plant to be exogenous and therefore, for a given technology j and agent i, at 

iteration t, the total fixed costs (Fit) are the sum of the fixed costs of each plant at iteration t. 

We are now able to compute the total operational profit (OPit) of an agent i, see equation 3.5.  

itpisibiit FtRtRtROP −++= )()()(        (3.5) 

In section 3.4, next, we look at the several steps of the process which enables the computation 

of cumulative profits for a possible investment. 
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3.4 Computing the Value of a Plant  

 15

}
We now look at the values of investment and retirement opportunities and analyze how to 

compute them. Let { 1,0,1−∈jtI  represent an investment (1), no action (0), or retirement (–1) 

in a plant of technology j, and let the variables kjt stand for the available capacity of each plant 

of type j, at iteration t.  

There is a different price path for each possible investment or retirement in each technology 

j=b, s, p, which is computed as represented by equation 3.6.  

Otherwise
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⎧

=    (3.6) 

Let us analyze equation 3.6. If there is an investment in a new technology h, the new installed 

capacity will be Kht+kht; if there is a retirement the new installed capacity will be Kht–kht. We 

can generalize this relation using the indicator function Iht and therefore the new capacity will 

be Kht+Iht.kht. Replacing this expression into equation 3.1 we get equation 3.6.  

Consequently, there are two main results arising from the analysis of equation 3.6: 

A) The impact of a given investment on market price is independent of the agent 

investing, as from equation 3.6 it follows that Pjt is a function of the technology in 

which the investment takes place and independent of the agent investing.  

B) Investments in technologies with marginal costs lower or equal to (higher than) the 

current price decrease (not to change) the clearing price.  Retirements in technologies 

with marginal costs lower or equal to (higher than) the current price increase (not to 

change) the clearing price. Assume that tj Pmg ≤ , from equation 3.7 it follows that if 

 then Pt decreases and if 1=jI 1−=jI  then Pt increases. Moreover, assume that 

, from equation 3.7 it follows that if tj Pmg > 1=jI  then Pt does not change, and if 

 then Pt still does not change. 1−=jI



Therefore, the impact of an investment (retirement) on price is a function of the technology in 

which the investment (retirement) takes place and of the level of demand to which the price 

refers to.  

For example, if for a given level of demand the current price is the price cap any investment 

may carry an impact on price (the actual impact is only a function of the excess demand and 

of the dimension of the investment): in this case the bigger the investment the more likely is it 

to have an impact on price; on the other hand, retirements have no impact on price. In the case 

in which the current price is the marginal cost of the baseload plants, only retirement on 

baseload can change the clearing price. 

Let us analyze the impact of an investment on technology j by agent i. This investment affects 

the clearing price, for all the technologies, and it also affects total installed capacity, total 

capacity of technology j, and the proportion of capacity owned by agent i. Therefore, in order 

to compute the quantities sold by an agent i from each one of his plants, we need to analyze 

how the investment affects each one of these variables.  

Let Pjt stand for the clearing price at iteration t, after the investment in technology j, and let 

 represent the total available capacity of type j, and furthermore let  represent 

the available capacity that agent i owns of technology j after the investment or retirement that 

has taken place. In this case, equation 3.7 represents the rule used to compute the quantity 

sold by agent i, from technology j, after an investment or retirement in j, which we represent 

as .  
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Equation 3.7 follows from equations 3.1, 3.3, 3.5, and the allocation rule, together with 

optimizing behavior. From equation 3.1 and the long-term maximization rule it follows that if  
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jjt mgP <  then . From equations 3.1 and 3.5 it follows that if  then 

 and that if  then we have  
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Moreover, we also need to analyze how an investment in a technology j affects the sales of 

any other technology . Let equation 3.8 represent the residual demand of technology h, 

after an investment or retirement in technology j, . 
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In this case, equation 3.9 represents the quantity sold by agent i, , from technology h 

after an investment in technology j. The same arguments used when we derived equation 3.7 

apply here. However, in this case an investment in a technology j only affects the residual 

demand of h.   
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Finally, in order to compute the value of an investment, we need to compute how each 

possible investment and retirement opportunity affects the profit of a portfolio. For each 

technology and agent and any possible investment or retirement we compute its marginal 

value, which represents the change in the value of the portfolio due to that specific investment 

or retirement. This process is now described step-by-step. 

First, for any investment or retirement in a technology j, for agent i, we compute the new net 

revenue of a technology h (which may or may not be equal to j), at iteration t, , as 

described by equation 3.10.  

j
htR +
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( ) )(tQmgPR j
hihjt

j
ht

++ −=         (3.10) 

Additionally, fixed costs increase (decrease) as well for the technology in which the 

investment (retirement) takes place. Therefore, if fht represents the fixed costs per unit of 

capacity installed of technology h, at iteration t, we can compute the new total profit, after an 

investment or retirement in technology j, of an agent i using equation 3.11: 

( ) ht

p

bh
hi

j
hihjtt ftktQmgPOP ∑

=

+ −−= )()(       (3.11) 

Let us now present the first results from the analysis of equation 3.7. An investment 

(retirement) will never generate a decrease (increase) of the quantities sold from the 

technology in which the investment (retirement) occurred.  

Let us see why. Assume that , then from equation 3.3 it follows that Qj = 0, in this 

case, an investment or retirement in this technology will not change the marginal price. On 

the contrary, if 

tj Pmg >

tj Pmg ≤  from equation 3.3 it follows that , and as the impact of a 

given investment on market price is independent of the player investing, it follows that an 

investment in this technology may decrease prices and increase generation, whereas a 

retirement may increase prices and decrease generation.  

0>jQ

Hence, if we analyze the relation between the different technologies we observe that: (a) an 

investment (retirement) in baseload technology decreases (increases) the generation of 

shoulder and peak plants; (b) an investment (retirement) in shoulder technology decreases 

(increases) the generation of peak plants; (c) an investment (retirement) in peak plants has no 

impact on the other technologies’ generation. 

As shown in this section, in order for a player to invest he models alternative scenarios for 

investment and retirement in each technology and observes the prices and value of each 

technology. Therefore, the player observes the spot prices for a long enough time in order to 

compute the expected value of each action. The player invests taking into account this 

expected value. Next, we show that there is a stationary state for the evolution of the industry 

structure. 
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3.5 Proving the Existence of a Stationary State 

In this section we characterize the stationary state and prove its existence. From the definition 

of stationary state we can derive the two different necessary conditions for its existence:  

1. In a stationary state, for any technology h and for any agent i, one of the following two 

conditions necessarily apply:  

1.a) An investment in a plant j leads to a non-positive operational profit in that plant: 

. We can understand this result from the analysis of the equations in our model. 

From equations 3.6 and 3.9 it follows that an investment will never increase the value of 

the other technologies in the industry. Therefore, from the definitions of   and 

, equations 3.5 and 3.11, if 

0≤ijOP

iOP

j
iOP + 0≤ijOP  then . j

ii OPOP +≥

1.b) An investment in a plant j of technology h leads to a positive operational profit in that 

plant but decreases prices and leads to a loss of operational profits in the rest of the 

agent i’s plants, decreasing agent i’s  operational profit:  but as  then 

.  

0>ijOP tjt PP <

j
ii OPOP +>

Next, in order to obtain a necessary condition for the existence of a stationary state, we need 

to show that 1.a) and 1.b) represent a partition of the state space such that they do not 

intercept and include all the states in which no investment takes place, for a given type of 

plant. First, as  in 1.a) and  in 1.b), these two conditions represent a partition 

of the state space. Second, if there is an opportunity to undertake an investment leading to an 

operational profit for the plant and to a price increase, then, from equations 3.6 and 3.9 it 

follows that this investment increases the agent’s operational profit, i.e., , and 

therefore it is not a stationary state. Third, if  and 

0≤ijOP 0>ijOP

j
ii OPOP +<

0>ijOP tjt PP =  it follows from equations 

3.6 and 3.9 that the value of the other plants remains the same, and as  then from 

equations 3.5 and 3.11 it follows that i’s profit increases, i.e., , and therefore it is 

not a stationary state.  

0>ijOP

j
ii OPOP +<

2. In a stationary state, for any technology h and for any agent i, one of the following two 

conditions necessarily apply: 
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2.a) The retirement of a  plant j of technology h with operational profit leads to higher  

prices, but not high enough to compensate for the loss of profit, leading to a lower 

operational profit for the agent. That is,  and by closing plant j prices increase 0>ijOP

( )tjt PP > , but . j
ii OPOP +>

2.b) The retirement of a plant j of technology h with operational profit does not lead to 

higher prices and decreases operational profits for the agent. That is, , by 

closing plant j prices do not change

0>ijOP

( )tjt PP = , and . j
ii OPOP +>

In conclusion, there is a stationary state when no agent wishes to change his portfolio of 

plants. In such a state both conditions 1 and 2 should apply for every agent i and technology 

h. Condition 1.a) is compatible with conditions 2.a) and 2.b) as they can be united by 

equations 3.6 and 3.9; in fact, in any state in which every plant of a given technology has an 

operational profit and in which the residual demand (in equation 3.8) is not enough to ensure 

a profitable new investment, these propositions are simultaneously true. Condition 1.b) is 

compatible with condition 2.a) only. In this case an investment in a given technology carries a 

profit (which is compatible with the fact that the current plants work with a profit), and an 

increase in capacity (investment) by incumbents or new firms decreases prices whereas a 

decrease in capacity (retirement) increases prices, but the price change is not big enough to 

justify any of the possible actions.     

4. A Simple Example Illustrating the Use of Reinforcement Learning 

In this section we analyze the workings of the extended reinforcement learning algorithm 

within an agent-based electricity market model. We use simulations to verify that the model is 

able to deliver “credible results”, i.e., a model of investment based on reinforcement learning 

in which plants are not built and retired over and over again, as it would happen if we had 

used the basic model presented in section 2.1. Moreover, besides this common sense result, 

we further expect credible results to be justifiable from a rationality perspective and, 

therefore, we expect the players to learn to increase the value of profits. 
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4.1 Parameters 

Our first task here is to specify meaningful parameters able to capture the agents’ behavior in 

typical liberalized electricity markets. The demand behavior represents the potential load 

duration curve of an electricity market during a year. We have modeled a demand function 

with an average demand of 40,000 MWh, a maximum of about 50,000 MWh, and a minimum 

of about 33,000 MWh representing how much electricity households and firms desire to 

consume at present prices in a typical day (as in Bunn and Oliveira, 2001). We only model the 

wholesale market, so these final prices are not passed to consumers. The duration of each 

level of demand represents the number of hours in the year in which consumption equals that 

level. In the experiments here developed we model hourly demand, so duration is equal to 

one. Since the future level of demand is not known to the players, they foresee it as a 

stochastic process which path they attempt to forecast within the simulation. We have 

assumed a price cap of 10,000 £/MWh. 

Each one of these firms faces, therefore, a very complex problem. Not only demand is 

uncertain and fluctuates from hour to hour and possibly from year to year, but his opponents’ 

behaviors (which may or may not follow a “rational strategy”) are uncertain and need to be 

learned over time. 

The generation side of the model is presented in Table 4.1. 

TABLE 4.1: GENERATION COSTS 

Type 

Fixed 
Investment 

(£/KW)  

Marginal 
Cost 

(£/MWh) 

Annual 
Operational 

Costs 
(£/kW)* 

Economic 
Life 

(years) 

Fixed 
Cost 
per 

Year 
(£/KW) 

Capacity 
(MW) 

Fixed 
Cost 
per 

Hour 
(£) 

Baseload 1,150 5 41 30 39.7 1,000 4,532 
Shoulder 740 12 24 25 30.56 500 1,744 

Peak 330 22 34 20 18.2 100 208 
 

The short-run marginal costs are the costs of producing an extra-unit when the firm does not 

incur in any start-up costs. These parameters are just a simple example of typical parameters 

in electricity markets (these were based on RAE, 2004). A full discussion on the assumptions 

on cost functions for electricity markets can be found in Stoft (2002). 



 22

We simulate a model with three agents owning the initial installed capacities described in 

Table 4.2 (values in MW) in which the initial technological structure of the different agents is 

different. We have two scenarios. These two scenarios are similar except that in one the total 

installed capacity is 35 GW whereas in the other it is 70GW. In these experiments the initial 

distribution of baseload, shoulder and peak plants are respectively, 43%, 43% and 14%.  

TABLE 4.2: CAPACITIES 

 Experiment 35GW Experiment 70GW 

 Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3 

Baseload 10,000 5,000 0 20,000 10,000 0 
Shoulder 5,000 5,000 5,000 10,000 10,000 10,000 

Peak 0 0 5,000 0 0 10,000 
 

In the first scenario the total installed capacity is not enough to supply the average (40,000 

MWh) and peak (50,000 MWh) demand for electricity, with the remaining being provided by 

private generation by families and firms, or not served. This is the case of an underdeveloped 

electricity system. The question that we address in this scenario is the following. In this 

scenario where there is a high potential demand for electricity will generation firms invest 

enough (given market incentives) to supply the potential demand? Moreover, in the second 

scenario in which there is excessive capacity, will this market structure attain stability in the 

long-run? 

4.2 Market Structure Evolution and Investment in Electricity Markets 

In each one of the simulations two million hours of electricity generation are simulated (this 

high number of iterations was used to allow the model to converge towards a stationary state). 

We first analyzed the two scenarios for learning rates ranging from 0.1% to 10% and different 

maximum valuation errors, ranging from 0.1% to 10%. In all the cases analyzed we observed 

a convergence from the initial total capacity (35GW and 70GW) to a total installed capacity 

of about 42GW, in both cases. The learning rate is much more important than the maximum 

valuation error in order to assure convergence to a steady state. This outcome is consistent 

with the analytical results in equations 2.5 and 2.6 as the learning rate influences the selection 



of information and the required accuracy of valuation. In these experiments a small learning 

rate (0.1%) was the best option. The maximum valuation error is not as important. In the 

experiments valuation errors of 0.1% and 1% performed equally well. Figure 4.1 presents the 

evolution of the total installed capacity in these experiments. 
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FIGURE 4.1: Evolution of total installed capacity with a leaning rate of 0.1% and a 

maximum valuation error of 1%. 

The results in Figure 4.1 show that the total installed capacity in the industry converged to 

very similar values from very different initial conditions. This is very reassuring of the ability 

of the learning algorithm to discover a consistent stationary state, i.e., similar for the same 

market conditions. Note also that the total capacity in the system converges to a value higher 

than the average demand (40,000 MWh) and lower than the maximum demand (50,000 

MWh). This observation suggests that firms learn to withhold investment in order to increase 

profits.  

Figure 4.2 shows that there is a structural change in the technological mix of the industry, 

moreover the evolution of the technological mix depends on the initial conditions. Even 

though the technological mix was the same in the start of the simulations (for the scenarios 

analyzed), in the scenario with 35GW the relative importance of the technologies remains 

stable (with baseload increasing a bit faster), whilst in the scenario with 70GW baseload 

becomes the dominant technology, with about 80% of installed capacity whereas the shoulder 

technologies have a great reduction of importance. 
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FIGURE 4.2: Market share by technology after 2 million iterations. 

Furthermore, the evolutionary model of investment can be used to analyze the investment 

behavior of the three agents in the industry. In Figure 4.3 we look at the market shares at the 

end of the two million iterations.  
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FIGURE 4.3: Total capacity share per agent.  

In the initial state the market shares for Agent 1, Agent 2 and Agent 3 were, respectively, 

40%, 30% and 30%. The results presented in Figure 4.3 show that these market shares will 

converge to similar values, independently of the starting conditions (i.e., for both scenarios). 

However, this apparent homogeneity hides a very different internal technological structure of 

the agents. As shown in Figure 4.4, not only are the different internal structures of each agent 

different from the other agents in the industry, they are also different from the internal 

structure of the correspondent agent in the different scenarios. This shows that the initial 

conditions of the scenarios have an impact on the technological structure of the players. 
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However, there are regularities that stand out. Agent 3 remains the dominant in peak 

technologies, as he is the only agent to which this technology is important. For agent 1 

baseload remains the dominant technology in both scenarios. Agent 2 is the one that is more 

affected by the initial conditions, as whilst in the 35GW scenario more than 40% of his 

capacity is invested in shoulder plants; in the 70GW scenario he only invests 20% of his 

capacity in this technology.  
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FIGURE 4.4: Proportion of capacity by technology, for each agent.  

Finally, even though we are modeling an oligopolistic industry and therefore, as in Murphy 

and Smeers (2005), and Pineau and Murto (2003), no new entry is allowed (as there are 

barriers to entry), in order to test the soundness of the model we simulated several scenarios 

in which we allow free entry in the industry. The results of these experiences converged to a 

capacity equal to about the maximum value of demand (50,000 MWh) and the prices coming 

down to marginal costs with very few price spikes. In this case, all the incumbents eventually 

abandoned the industry by retirement of their plants.  

5. Conclusion 
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In this paper we develop a reinforcement learning algorithm to model an agent based 

evolutionary game of investment in electricity markets. We consider an industry in which 

each player is able to own a portfolio of several technologies and characterized by different 

cost structures and discrete investment decisions. This reinforcement learning algorithm 

extends the n-armed bandit algorithm in order to deal with situations in which there are a very 

large number of interactions with the environment and where decisions are very expensive. 

This is the case of the investment problem in electricity markets in which the agents are able 

to interact with the market at every hour but only a few investments occur in any given year. 



We have analyzed the extended n-armed bandit algorithm and established its equilibrium 

properties. We have also analyzed the equilibrium properties of the model, showing the 

existence of stationary states of the industry.  

The experiments conducted with the evolutionary model show the importance of the 

parameterization of the learning algorithm in order to obtain consistent and reasonable results.  

The experiments and simulations conducted with the evolutionary algorithm show that, under 

reasonable parametrical assumptions regarding the levels of maximum valuation error and the 

leaning rate: (i) firms learn to withhold investment in order to increase profits (ii) without a 

cost advantage of any agent in any of the technologies, market shares will converge to be 

equal; (iii) Even agents with similar market shares can have very different internal structures, 

at the stationary state; (iv) the technological mix of the industry depends on the initial 

conditions. 

The main aim of this paper is to propose an evolutionary algorithm capable of modeling 

decisions that have an important impact on the environment in which the decision maker is 

inserted. The model used to simulate an electricity market is very detailed, however, we 

followed Murphy and Smeers (2005) and Pineau and Murto (2003) including only the 

essential features of the market required to illustrate the benefits of our algorithm. The model 

here presented can be extended to incorporate other market clearing mechanisms, regulation 

instruments such as market share control, or the inclusion of other markets for electricity, 

such as futures markets or long-term contracts. One of the advantages of the proposed 

methodology is its flexibility, as the learning algorithm will work properly for as long as the 

basic conditions are respected. 

Appendix – Notation 

Greek alphabet: 

α : learning rate, a weight-factor such that 10 ≤≤α . 

δ : maximum valuation error, an exogenous parameter (close to zero). 

1
a
tu + : profit received, at iteration t+1, by executing action a. 

u : profit received by executing action a when 1
a
tu +  is constant. a is removed for convenience 

of notation. 

( )atπ : expected profit from an action a, at iteration t.  
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tπΔ : change in the expected value of the profit, at iteration t. 

 

Roman alphabet: 

a: action, to invest of to retire a electricity plant.  

Dt: electricity demand at iteration t.  

Fit: fixed costs for a given technology j and agent i, at iteration t 

fht: fixed costs per unit of capacity installed of technology h, at iteration t. 

Gij(t), Iij(t), Sij(t): total number of plants, number of plants set-up at iteration t, and the number 

of plants shut-down at time t, respectively 

i: index for the agent. 

{ 1,0,1−∈jtI }: discrete variable representing investment (1), no action (0), or retirement (–1) 

in a plant of technology j, at iteration t. 

j:  index for the type of technology. 

Kbt, Kst, Kpt: total available capacity for baseload, shoulder and peak plants, respectively, at 

iteration t.  

kjt: available capacity of each plant of type j., at iteration t. 

kbi(t), ksi(t), kpi(t): available capacity owned by agent i of baseload, shoulder and peak plants, 

respectively, at iteration t. 

)(tK j
ji
+ : total available capacity of type j, after the investment or retirement in technology j. 

)(tk j
ji
+ : available capacity of technology j, owned by agent i, after an investment or retirement 

in technology j. 

mgb, mgs, mgp: marginal costs for baseload, shoulder and peak plants, respectively.  

iOP , : current operational profit, and operational profit after an investment or retirement 

in technology j, respectively, of agent i 

j
iOP +

tP : electricity price at iteration t. 

P : electricity price cap at iteration t. 

Pjt: clearing price at time t, after the investment in technology j. 

)(tQbi , , : quantities sold by agent i of baseload, shoulder and peak plants at 

iteration t. 

)(tQsi )(tQpi

)(tQ j
ji
+ : quantity sold by agent i, from technology j, after an investment or retirement in j. 
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RDjt: residual demand of electricity at iteration t, i.e., demand left after taking out the 

generation of the plants with lower marginal cost in the system. 
j

htRD + : residual demand of electricity satisfied by technology h, after an investment or 

retirement in technology j. 

Rji(t): total net revenue of an agent i, for a given technology j, at iteration t. 

t:  index for iteration. 

T: maximum number of iterations. 

Wt(a): estimate of the change in expected value of action a. 
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