
On the Impact of Forward Markets

on Investments in Oligopolistic Markets with

Reference to Electricity

Part 2, Uncertain Demand

Fred Murphy Yves Smeers

April 27, 2007

Abstract

There is a general agreement since Allaz-Vila’s seminal contribution that forward

contracts mitigate market power on the spot market. This result is widely quoted and

elaborated in studies of restructured power markets where it is generally believed that

generators tend to exploit the special characteristics of this industry in order to extract

higher prices. Allaz-Vila established their result under the assumption that the production

capacities of the players are infinite. This assumption might have applied to the power

industry in the early days of restructuring but it no longer holds in today environment of

tightening capacity. We show that the Allaz-Vila result no longer holds when capacities

are endogenous and constraining generation. Specifically the future market can enhance

or mitigate market power when capacities are endogenous and demand is unknown at the

time of investment. This result complements Part 1 where the authors show that forward

markets do not mitigate market power when capacities are endogenous and demand is

known at the time of investment. It also complements other work by Grimm and Zoettl

who show that forward markets systematically enhance market power in some symmetric

capacity-constrained markets.
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1 Introduction

Among the many difficulties encountered in the restructuring of electricity

systems, market power and resource adequacy emerge as particularly difficult

to handle. The possible exercise of market power and how to mitigate it has

retained considerable attention since the California crisis. Many see it as the

central cause of the slow progress of electricity restructuring in Europe.1 Re-

source adequacy is related to investments levels which have not materialized as

initially expected. Both issues are related: insufficient capacity enhances mar-

ket power and facilitates its exercise. Both issues were treated relatively easily

in the past: utilities were regulated at average cost and could generally2 add

capacity costs to their rate bases. Excess investment was even recognized by

the literature as a way to increase profits (Averch and Johnson effect (1962)).

In restructured markets these problems are much more difficult. While many

argue that utilities exercise of market power, this remains difficult to prove

in Courts. Notwithstanding the abundance of informal discussions on invest-

ment, the literature lacks the sophistication of the capacity expansion models

developed for the regulated industry.

This paper analyses a model that combines capacity expansion and a fu-

tures market, albeit in an extremely stylized way. The reasoning behind a

futures market increasing production is in two parts: generators that have

sold part of their supplies forward have less incentive to increase price on the

spot market; moreover, a prisoner’s dilemma effect identified by Allaz (1992)

and Allaz and Vila (1993) induces generators to enter the forward market,
1Difficulties in the restructuring of electricity markets can be attributed to inadequate

market architecture (market design) or structure (concentration, inadequate capacities). The

question of market architecture has never been tackled seriously in Europe outside of the

UK and the Nordic countries.
2That is, before the prudence reviews that developped in the US. There was no similar

development in Europe.
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thereby reducing market power. This argument was developed without con-

sidering the effects of capacity limits. With capacities, companies indeed have

an additional instrument that has the potential to mitigate the Allaz-Vila

effect. In short the question is whether the forward market can still miti-

gate market power when capacities are endogenous. Conversely, the forward

market, because of the Allaz-Vila effect, could induce companies to react by

reducing investments as a way of managing spot and forward markets.

We looked at that problem under the simplifying assumption of a fixed

demand or single deterministic demand function in Part 1 and came to the

following conclusion. The Allaz-Vila effect completely disappears when capac-

ities are endogenous, thereby eliminating the potential of the forward market

to reduce market power. Except for possibly destroying the existence of a pure

strategy equilibrium, the introduction of a forward market is completely trans-

parent: it does not change the capacity invested and there is no impact on the

market power exercised on the spot market. This result has another interesting

interpretation. The three-stage game (investment, forward market, spot mar-

ket) has the same pure strategy equilibrium as a two-stage game (investment,

spot market) which is itself equivalent to a single stage game in investment

and sales. This result is very much akin to celebrated result established by

Kreps and Scheinckman (1983) for a two-stage game (Cournot/Bertrand).

The main result of this paper is less positive: we remove the assumption of

a single deterministic demand function and assume that the demand function is

unknown at the time of the investment (as it effectively is). We then establish

the two following results:

i) the Allaz-Vila result that the forward market mitigates market power no

longer holds. In fact the effect of the forward market is ambiguous.

It can enhance or mitigate market power and one cannot know which

occurs until the model parameters are known;

3



ii) the equivalence between the multistage and single stage games no longer

holds. The solution of the three-stage game (with the forward markets)

is different from the solution to the two-stage game (without forward

markets).

Our results are developed for the general case without a load curve. Never-

theless, the practical side of these results is the suggestion that we know very

little about the behavior of long-term restructured electricity markets when

there is market power.

This paper can be related to many areas of the literature. Green (1992)

was probably the first one to point the market mitigation effect of forward

contracts in restructured electricity systems. His analysis referred to the for-

mer England and Wales pool and discussed the impact of exogenously given

forward contracts. Many authors later elaborated on the subject, looking at

different restructured markets. Models with endogenous contracts were devel-

opped after Vila (1992) and Allaz-Vila (1993) seminal contributions. These

models are of two-stage games and take different forms. Some adopt the no

arbitrage argument that underlies the results of Allaz and Allaz and Vila.

This is the case in Green (1999). Some take another view and assume a set

of agents maximizing Markowitz type utility functions. Sidiqqui (2003) is an

example of these. Last but not least Kamat and Oren (2004) simply question

the assumption of no arbitrage and assume that the two-settlement organiza-

tion offers discrimination possibilities to the generator and hence can enhance

market power. While this literature refers to single games, other authors ex-

amine the effects of repeated games, specifically Liski and Montero (2006) and

Harvey and Hogan (2000). Lastly, Le Coq and Orzin (2002) did experiments

testing this result. For a more complete literature review, see part I.

This paper belongs to a smaller stream of the literature. Elaborating on

existing economic concepts, e.g. Gabszewicz and Poddar (1997), Murphy and
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Smeers (2005) analyze capacity expansion in restructured electricity systems

subject to market power. Grimm and Zoettl (2006) further investigate the

subject and show that forward markets always have a detrimental effect on

investments in some symmetric games as does Adilov (2005).

2 The model

The models analyzed in this paper are constructed as follows.

Suppose two generating companies are in competition, each specializing in

one particular technology. This can represent competition between a nuclear

generator (e.g. EdF) and a largely coal based utility (e.g. RWE in Germany),

or a gas generator (e.g. GdF). Alternatively, both generators can specialize in

the same technology. Following much of the economic literature, we assume

that there is no existing generation system (see Ehrenmann and Smeers (2005)

for a discussion of the impact of that assumption). Each company invests in

new capacity and competes on the spot market given its capacity. We thus

represent a merchant system. The two models considered in the paper differ

in that one has a forward market and the other does not.

In the model with a forward market, the equilibrium in the spot market is

found given the capacities and forward positions. The forward-market equi-

librium is found given the capacities and taking into account the ensuing spot

equilibrium. The players make capacity decisions knowing their impact on

the forward and spot equilibria. The model without a forward market has a

spot-market equilibrium that is a function of the capacities and the capacity

equilibrium is found knowing the effect of the capacity decisions on the spot

market.

In contrast to Part 1 we assume that future demand is uncertain. While

Part 1 shows that the assumption of a deterministic demand allows one to de-
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rive equivalence results similar to those established in Kreps and Scheinkmann,

we want to assess the robustness of these results with respect to the very im-

portant assumption of a deterministic demand. In reality demand is not known

at the time of investment. We model the uncertain demand by assuming an

inverted demand function of the form

p = ξ − q (1)

where p and q respectively denote the price and quantity

ξ is a random intercept with density f(ξ)

ξ takes its value in an interval (L,U)

The economic characteristics of the technologies are summarized in the

pairs

ki, νi i = 1, 2 (2)

where ki and νi are respectively the investment and operating costs of tech-

nology i measured in ⊂= or $/Mwh (see Stoft, 2002 for a discussion of these

units).

For the sake of technical simplicity and with the view of contributing to the

debate on the role of forward markets as a potential instrument for mitigating

market power, we assume that the competing companies behave like Cournot

players in each of the markets (spot, forward and capacity): they exert market

power by setting quantities (energy delivered, forward positions, capacities

invested). This is only a working assumption and we make no claim or even

suggest that it corresponds to the behavior of a particular company. These

quantity variables are denoted

xi, yi, zi(ξ) i = 1, 2 (3)

where xi is the capacity invested by firm i

yi is the futures position of firm i

zi(ξ) is the energy delivered by firm i when the demand realization

is ξ
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Given this background we describe the three markets as follows.

2.1 The spot market

Let xi and yi be respectively the capacity and forward positions of agent i

when it enters the spot market. We assume that the demand function (1)

(that is, the parameter ξ) is revealed after the investments are made and

forward positions are taken. For each realization of ξ, the two companies

compete as Cournot players on the spot market. Rewriting zi(ξ) as zi for the

sake of convenience, this implies that each company i takes the production z−i

of the other as given and solves

max
zi

(ξ − zi − z−i)(zi − yi)− νizi (4)

s.t. 0 ≤ zi (ωi) (5)

0 ≤ xi − zi (λi) (6)

This formulation expresses that, after selecting a forward position yi at an

already established forward price, the incentive of the generator to manipulate

the market by restricting its generation zi is limited to the residual market

zi−yi. Let ωi and λi be the dual variables of the constraints zi ≥ 0 and xi−zi ≥
0 respectively. Solving the problems of both generators simultaneously, we

obtain the equilibrium conditions of the Cournot spot market.

0 ≤ ξ − 2zi − z−i − νi + yi − λi + ωi ⊥ zi ≥ 0, i = 1, 2

0 ≤ xi − zi ⊥ λi ≥ 0, 0 ≤ zi ⊥ ωi ≥ 0, i = 1, 2.
(7)

Note that the solution to these conditions is contingent on the realization ξ.

The equilibrium on the spot market is thus a parametric complementarity

problem. Last we note that the profit accruing to the firm from its operations

on the spot market is

(ξ − zi − z−i − νi)(zi − yi) (8)

where the zi and z−i satisfy condition (7).
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2.2 The forward market

Let yi be the position taken by agent i on the forward market. We invoke

the usual no arbitrage assumption of finance theory which implies that yi

is sold at a price that is the expectation in some risk neutral probability of

the spot price (see any textbook of finance, e.g. Hull (2006)). This implies

that we reinterpret the distribution f(ξ) of the parameter ξ as a risk neutral

probability that develops from the trading of the forwards. The forward price

is thus ∫ U

L
(ξ − zi − z−i)f(ξ)dξ. (9)

When taking the position yi given the position y−i of player −i, the profit of

player i on both the spot and forward markets is then

yi
∫ U
L (ξ − zi − z−i)f(ξ)dξ +

∫ U
L (ξ − zi − z−i)(zi − yi)f(ξ)dξ

=
∫ U
L (ξ − zi − z−i)zif(ξ)dξ.

(10)

While this profit does not invoke yi explicitly it does so implicitly to the extent

that the zi and z−i are parameterized by yi and y−i. The Cournot problem on

the forward market is then defined as follows. Given y−i, generator i solves

max
yi

∫ U

L
(ξ − zi − z−i)zif(ξ)dξ (11)

where zi and z−i are the solution of (7).

Equilibrium problems (here equilibrium in the y) subject to equilibrium con-

straints, here relation (7), (EPEC) belong to the class of Generalized Nash

Games (Rosen (1965), Harker (1991)) and suffer from several problems. Specif-

ically, they may or may not have pure strategy equilibria. When pure strategy

equilibria exist, they might or might not be unique. When there are multiple

equilibria, these solutions can form either a single continuous set or discontin-

uous sets (Ehrenmann (2004)).

Problem (11) can be converted into a usual Nash equilibrium, albeit with-

out much benefit. Indeed, the solution of the spot equilibrium conditions (7) is
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unique implying that there exists a unique pair of (nondifferentiable) functions

zi(yi, y−i; ξ) and z−i(yi, y−i; ξ) (12)

that solves (7). Replacing (12) in (11) we obtain the reformulation of (11)

g(xi, x−i)

= maxyi

∫ U

L
[ξ − zi(yi, y−i; ξ)− z−i(yi, y−i; ξ)− νi]zi(yi, y−i; ξ)f(ξ)dξ

(13)

which is a standard Nash equilibrium and no longer an EPEC. Note that this

problem is unconstrained in yi as one assumes that generators can take long or

short positions in the futures market and that speculators are ready to take the

opposite position. Note also that, in contrast with the spot market, this Nash

problem is not guaranteed to have convexity properties with the result that we

cannot ascertain that it has a pure strategy solution. The convexity/concavity

properties of the second-stage (here spot market) problem of an EPEC are

usually lost when moving to the first-stage (here the forward market) of the

EPEC. This happens here.

2.3 The capacity market

The profit function of generator i in the forward market depends on the in-

stalled capacities xi, i = 1, 2. The Cournot model on the capacity market is

obtained by defining the net profit (after accounting for capital charges) of

company i

pi(xi, x−i) = g(xi, x−i)− kixi (14)

with both players simultaneously solving

max
xi≥0

pi(xi, x−i). (15)

This is the problem that we are ultimately interested in and for which we want

to analyse the impact of a forward market.
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3 The standard Allaz-Vila result

Allaz (1992) and Allaz-Vila (1993) showed that the introduction of a forward

market mitigates market power. They establish their result in the case of a

symmetric equilibrium in a two-stage game where the players optimize their

futures position given the resulting equilibrium in the spot market. We first

rederive their result in our power market context. We extend Allaz-Vila’s

model to players operating different technologies and use the model of Section 2

but assume that capacities are non binding whatever the values of ξ. Consider

the spot market first. Adapting from Part 1, and assuming zi(xi) > 0 for all

xi, i = 1, 2, the equilibrium conditions on the spot market when the forward

positions are respectively yi and y−i are

ξ − 2zi(ξ)− z−i(ξ)− νi + yi = 0, i = 1, 2.

This implies

zi(ξ) =
1
3
[ξ − 2(νi − yi) + (ν−i − y−i)] (16)

and

p(ξ) =
1
3
[ξ + (νi − yi) + (ν−i − y−i)]. (17)

In order to assess the impact of the forward market, we first compute the

equilibrium on this market. One can easily verify that the profit of player i

for forward positions (yi, y−i) is

Πi(yi, y−i) = 1
9

∫ U

L
(ξ − 2νi + ν−i − yi − y−i)

(ξ − 2νi + ν−i + 2yi − y−i)f(ξ)dξ.

Taking the derivative of Πi and Π−i with respect to yi and y−i respectively,

we obtain

∂Πi
∂yi

= 1
9

∫ U

L
(ξ − 2νi + ν−i − 4yi − y−i)f(ξ)dξ = 0

∂Π−i
∂y−i

= 1
9

∫ U

L
(ξ − νi + 2ν−i − yi − 4y−i)f(ξ)dξ) = 0
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∂2Πi

∂y2i
= −4

9
< 0

∂2Π−i
∂y2−i

= −4
9
< 0.

The solution of ∂Πi
∂yi

= ∂Π−i
∂y−i

= 0 is thus an equilibrium and the corresponding

positions on the forward market are given by

yi =
1
5
[E(ξ)− 3νi + 2ν−i], y−i =

1
5
[E(ξ)− 3ν−i + 2νi] (18)

where

E(ξ) =
∫ U

L
ξf(ξ)dξ.

Because we assume that zi is positive for all ξ in the spot market, we have

ξ > νi, ∀ ξ and hence

yi + y−i =
1
5
[(E(ξ)− νi) + (E(ξ)− ν−i)] > 0. (19)

Now let pf (ξ) and p0(ξ) be respectively the electricity price when there is a

forward market and when there is only a spot market. Replacing yi + y−i by

its expression (19), we immediately see from (17) that

pf (ξ) < p0(ξ).

This shows that the forward market decreases the price with respect to the

pure spot market. This is the expected Allaz-Vila type result.

4 Back to the capacitated case

The restructuring of electricity began in an environment of relative excess

capacity. This is no longer the case today with current concerns about resource

adequacy. The introduction of capacities changes the mathematical structure

of the Allaz-Vila model. It also changes the results.

4.1 The two capacity models: with and without a forward

market

Consider two models consisting of the following components
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• Model with forward market: this model comprises all modules described

in Sections 2.1, 2.2 and 2.3

• Model without forward market: this model comprises the different mod-

ules described in Sections 2.1, 2.2 and 2.3 where the yi are set to zero.

The equilibrium model with forward market (15) is mathematically quite

complex and beyond the scope of what is generally handled using mathemati-

cal programming techniques: it is a three-stage game, a problem more complex

than an EPEC. Our objective is not to solve this problem analytically (we do

solve numerical examples in Section 6). Instead, we provide sufficient anal-

ysis to explore the claim that the forward market always mitigates market

power. Our analysis suggests that we know much less about the impact of for-

ward markets than is sometimes thought. A second objective is to investigate

the practice that consists of replacing the complex (and currently intractable)

three-stage model by the easier (but still complex) two-stage model. These

limited objectives justify that we introduce some further simplifying assump-

tions in the treatment of the spot market as we need them.

4.2 The spot market

As shown in Section 2, the modeling of the spot market drives the rest of

the formulation. An equilibrium of the spot market always exists, and under

our assumptions it is also unique. This equilibrium can be characterized by

specifying the constraints that are binding. The following cases can occur:

(i) 0 < zi(ξ) < xi i = 1, 2 (20.1)

(ii) 0 < zi(ξ) < xi 0 < z−i(ξ) = x−i (20.2)

(iii) 0 < zi(ξ) = xi i = 1, 2 (20.3)

(iv) 0 = zi(ξ) ≤ xi 0 < z−i(ξ) = xi (20.4)
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(v) 0 = zi(ξ) ≤ xi i = 1, 2. (20.5)

For our objective it is sufficient to consider only equilibria for which zi > 0,

i = 1, 2. This implies that we simplify the complementarity relations (7) into

ξ − 2zi − z−i − νi + yi + λi = 0 i = 1, 2 (21.1)

0 ≤ xi − zi ⊥ λi ≥ 0 i = 1, 2 (21.2)

and limit ourselves to the first hree cases in (20).

The set of binding inequalities (20.1), (20.2) and (20.3) depends on the

value of ξ. Define αi(x, y) and α−i(x, y) to be the smallest values of ξ such

that
z−i(ξ) = x−i and zi(ξ) < xi for ξ = α−i(x, y)

z−i(ξ) = x−i and zi(ξ) = xi for ξ = αi(x, y).
(22)

The definition implies

α−i(x, y) < αi(x, y). (23)

The definitions (22) apply in the model without forward markets by setting

y = 0. Note that one cannot assess ex ante whether i = 1 or 2 in (23) solely

from the data.

4.2.1 The spot market with forwards positions

We successively consider the first three cases in relations (20).

Case 1. From Part 1, when capacity is not binding

z∗i (y) =
1
3
[ξ − 2(νi − yi) + (ν−i − y−i)]. (24)

The profit in the spot market is

1
3(3ξ − ξ + 2νi − 2yi − ν−i + y−i − ξ + 2ν−i − 2y−i − νi + yi − 3νi)

1
3[ξ − 2(νi − yi) + νi − y−i]

= 1
9(ξ − yi − y−i − 2νi + ν−i)(ξ − 2νi + 2yi + ν−i − y−i).

(25)
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The profit of player −i is found by interchanging i and −i.

Case 2. For z−i = x−i and zi < xi, we find zi by solving (21.1) for player i

ξ − 2zi − x−i − νi + yi = 0

or

zi =
ξ − x−i − νi + yi

2
. (26)

The profit for player i is:

1
4
(ξ − x−i − νi − yi)(ξ − x−i − νi + yi) =

1
4
[(ξ − x−i − νi)2 − y2i ]. (27)

The profit for player −i is:

(ξ − zi − x−i − ν−i)x−i =
(
ξ − ξ − x−i − νi + yi2 − x−i − ν−i

)
x−i

= 1
2(ξ − x−i − 2ν−i + νi − yi)xi.

(28)

Case 3. For zi = xi, i = 1, 2 the profit is

(ξ − xi − x−i − νi)(xi).

Next we find the values of α, defined by (22) and (23), where the profit func-

tions switch from Case 1 to Case 2 and from Case 2 to Case 3. These α’s

become limits of integration for computing the profit accruing to the agents in

the forward market. Noting that αi(x, y) > α−i(x, y) is consistent with Case

2, we can solve for αi(x, y) and α−i(x, y). Since α−i(x, y) is the point where

the solution to the spot market (24) equals capacity, for −i, we have

x−i =
1
3
[ξ − 2(ν−i − y−i) + (νi − yi)]

or

α−i(x, y) = 3x−i + 2(ν−i − y−i)− (ν − yi). (29)

Similarly,

αi(x, y) = 2xi + x−i + νi − yi. (30)

14



4.2.2 The spot market without a forward market

The relevant formulae are obtained by setting yi = 0 in the expressions (25)

to (30).

4.3 The forward market

Consider the case where there is a forward market. Using the expressions

established in Section 4.2.1, we define the profit function of both agents i and

−i (recall that i and −i are identified by the relation α−i(x, y) < αi(x, y) or

α−i(x) < αi(x)). Let pi(x, y) and p−i(x, y) be the profit functions of generators

i and −i respectively,

pi(x, y) = 1
9

∫ α−i(x,y)

L
(ξ − yi − y−i − 2νi + ν−i)

(ξ + 2yi − y−i − 2νi + ν−i)f(ξ)dξ

+ 1
4

∫ αi(x,y)

α−i(x,y)
[(ξ − x−i − νi)2 − y2i )]f(ξ)dξ

+
∫ U

αi(x,y)
(ξ − xi − x−i − νi)xif(ξ)dξ − kixi

(31)

p−i(x, y) = 1
9

∫ α−i(x,y)

L
(ξ − yi − y−i + νi − 2ν−i)

(ξ − yi + 2y−i + νi − 2ν−i)f(ξ)dξ

+ 1
2

∫ αi(x,y)

α−i(x,y)
(ξ − x−i + νi − 2ν−i − yi)x−if(ξ)dξ

+
∫ U

αi(x,y)
(ξ − xi − x−i − ν−i)x−if(ξ)dξ − k−ix−i.

(32)

The equilibrium on the forward market if it exists is obtained by solving

∂pi(x, y)
∂yi

=
∂p−i(x, y)
∂y−i

= 0. (33)

Existence and uniqueness of the forward equilibrium also require

∂2pi(x, y)
∂y2i

< 0 and
∂2p−i(x, y)
∂y2−i

< 0.

Assuming that the equilibrium exists, these relations define forward positions

yi(x) and y−i(x) for both agents i and −i.
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4.4 The capacity market

Suppose first that there is a forward market and that its equilibrium exists.

The profit function of the capacity market is obtained after replacing the yi

by the equilibrium solution y(x) on the forward market. This can be stated

as

pi(x) = pi[x, y(x)] i = 1, 2. (34)

Consider now the case without a forward market. The objective functions

in the capacity game are obtained by setting yi and y−i to zero in (31) and

(32). This leads to

pi(x, 0) =
∫ α−i(x)

0

1
9(ξ − 2νi + ν−i)(ξ − 2νi + ν−i)f(ξ)dξ

+
∫ αi(x)

α−i(x)

1
4(ξ − x−i − νi)2f(ξ)dξ

+
∫ ∞
αi(x)

(ξ − xi − x−i − νi)xif(ξ)dξ − ki(xi)

(35)

and

p−i(x, 0) =
∫ α−i(x)

0

1
9(ξ − 2ν−i + νi)(ξ − 2ν−i + νi)f(ξ)dξ

+
∫ αi(x)

α−i(x)

1
2(ξ − x−i − 2ν−i + νi)x−if(ξ)dξ

+
∫ ∞
αi(x)

(ξ − xi − x−i − ν−i)x−if(ξ)dξ − k−ix−i

(36)

5 Necessary equilibrium conditions

Multistage games do not necessarily have pure strategy equilibria or may have

several of them. We analyze this question here by elaborating on the necessary

conditions that equilibria should satisfy and discussing why they do not always

lead to a pure strategy equilibrium. We assume that the objective functions

at each stage are differentiable.

16



5.1 The necessary conditions of the equilibrium without a for-

ward market

Setting yi = y−i = 0 in relations (29) and (30) we obtain

α−i(x) = 3x−i + 2ν−i − νi (37)

αi(x) = 2xi + x−i + νi. (38)

The equilibrium conditions are obtained when each agent maximizes its profit

by choosing its capacity level or

∂pi
∂xi

=
∫ U

αi

(ξ − 2xi − x−i − νi)f(ξ)dξ − ki = 0 (39)

∂p−i
∂x−i

=
1
2

∫ αi

α−i
(ξ − 2x−i + νi − 2ν−i)f(ξ)

+
∫ U

αi

(ξ − xi − 2x−i − ν−i)f(ξ)dξ − k−i = 0. (40)

Relation (39) can be rewritten as
∫ U

αi(x)
(ξ − αi)f(ξ) = ki.

It is an equation in αi from which we infer an equivalent relation

αi(x) = 2xi + x−i + νi = αi.

An equilibrium must satisfy this relation with αi < U . The second order

condition of (39) is obtained as

∂2pi

∂x2
i

=
∫ U

αi

(−2)f(ξ)dξ − (αi − αi)
∂αi
∂xi

= −2
∫ U

αi

f(ξ) < 0. (41)

Consider now the second order condition ∂
2p−i
∂x2
−i

. We have

∂2p−i
∂x2
−i

= 1
2

∫ αi

α−i
(−2)f(ξ)dξ +

∫ U

αi

(−2)f(ξ)dξ

+1
2(αi − 2x−i + νi − 2ν−i)f(αi)

∂αi
∂x−i

−1
2(α−i − 2x−i + νi − 2ν−i)f(α−i)

∂α−i
∂x−i

−(αi − xi − 2x−i − ν−i)f(αi) ∂αi∂x−i
.
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The last three terms can be written after replacement of αi, α−i,
∂αi
∂x−i

and
∂α−i
∂x−i

by their values

f(αi)(xi − x−i2 + νi − ν−i)− 3
2f(α−i)x−i

− f(αi)(xi − x−i + νi − ν−i)
= x−i

2 (f(αi)− 3f(α−i)).

To sum up, we have

∂2p−i
∂x2
−i

= −
∫ αi

α−i
f(ξ)dξ − 2

∫ U

αi

f(ξ)dξ

−x−i2 (3f(α−i)− f(αi)).
(42)

The sign of this expression is generally undetermined. It is always negative in

the special case of a uniform exponential distribution of ξ.

5.2 Necessary equilibrium conditions with a forward market

We first consider the equilibrium conditions on the forward market and then

turn to the capacity market.

5.2.1 First order conditions on the forward market

Let x be given. The necessary conditions of the futures market are given as

∂pi
∂yi

=
∂p−i
∂y−i

= 0 (43)

where

∂pi
∂yi

= 1
9

∫ α−i(x,y)

L
(ξ − 4yi − y−i − 2νi + ν−i)f(ξ)dξ)

−yi2
∫ αi(x,y)

α−i(x,y)
f(ξ)dξ

(44)

∂p−i
∂y−i

= −1
9

∫ α−i(x,y)

L
(ξ − yi − 4y−i + νi − 2ν−i)f(ξ)dξ. (45)

Let

ψ−i(ξ, x, y) =
1
9
(ξ − yi − 4y−i + νi − 2ν−i) for ξ ∈ [L,α−i(x, y)] (46)
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and

ψi(ξ, x, y) =




1
9(ξ − 4yi − y−i − 2νi + ν−i) for ξ ∈ [L,α−i(x, y)]

−yi2 for ξ ∈ [α−i(x, y), αi(x, y)].
(47)

Relation (43) can be restated as

Ψi(x, y) =
∫ αi(x,y)

L
ψi(ξ, x, y)f(ξ)dξ = 0. (48)

Ψ−i(x, y) =
∫ α−i(x,y)

L
ψ−i(ξ, x, y)f(ξ)dξ = 0. (49)

Solving these relations together with

α−i(x, y) = 3x−i + 2(ν−i − y−i)− (νi − yi) (50)

αi(x, y) = 2xi + x−i + νi − yi (51)

gives a candidate equilibrium on the forward market.

One immediately sees that

yi = 0; α−i(x, y) = L

always satisfies relations (48) – (51). We refer to a solution with these prop-

erties as a corner solution. A solution satisfying α−i(x, y) > L is termed an

interior solution.

We first examine second order conditions for both corner and interior equilibria

and complement this analysis by a discussion of the reaction curves of the

players. This leads us to conclude that in contrast with the infinite capacity

model of Allaz-Vila recalled in Section 3, the equilibrium does not necessarily

exist on the forward market. We discuss separately the cases of interior and

corner solutions.
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Second order conditions

(a) interior solution

First note that

∂2pi
∂y2i

= ∂Ψi(x, y)
∂yi

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ + ψi(α−i, x, y)f(α−i)

∂α−i
∂yi

− 1
2

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ

+yi2 [f(α−i)
∂α−i
∂yi

− f(αi)∂αi∂yi ]

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ + ψi(α−i, x, y)f(α−i)− 1

2

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ

+yi2 [f(α−i) + f(αi)].
(52)

The sign of this expression is indeterminate.

We also have

∂2p−i
∂y2−i

= ∂Ψ−i
∂y−i

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ − 2ψ−i(α−i, x, y)f(α−i)

∂α−i
∂y−i

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ − 2ψ−i(α−i, x, y)f(α−i) < 0

(53)

since ψ−i(α−i, x, y) > 0, f(α−i) > 0, and f(ξ) > 0.

We conclude that it is impossible to ascertain a priori that the forward market

with capacities has an interior equilibrium.

b) Corner solution

We now turn to the corner solution

yi = 0, α−i(x, y) = L.

We here need to distinguish two cases depending on whether the y variable

increases or decreases. We first note that decreasing yi while keeping y−i fixed

decreases α−i(x, y) in formula (50). This is not possible since α−i is already at

its lower bound. Similarly, when λ > 0 in (7) at xi = L, αi does not change.
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This implies that we set ∂α−i
∂yi

= 0 in expression (52) which becomes

∂2pi

∂y2i
= −1

2

∫ αi

L
f(ξ)dξ +

yi
2
f(αi).

The expression is negative at yi = 0 and can only remain negative when yi

decreases. The second order condition is satisfied in this case.

We now examine an increase of yi. Recall that

L = 3x−i + 2(ν−i − y−i)− νi
or y−i = 1

2[3x−i − νi + 2ν−i − L].

Replacing y−i by this value in ψi(α−i, x, y) we get

ψi(α−i, x, y) =
1
9
(
3L
2
− 3

2
x−i −

3
2
νi − 4yi)

and the sign of (52) remains undetermined. In conclusion we cannot ascertain

ex ante that a corner solution is a maximand for player i.

Consider now player −i and assume a change of y−i when yi remains at 0.

Increasing y−i should decrease α−i in the middle term of (53), which is not

possible. We thus set ∂α−i
∂y−i

= 0 in relation (53) and for y−i decreasing get

∂2p−i
∂y2−i

= −4
9

∫ α−i(x,y)

0
f(ξ)dξ < 0.

The second order condition is satisfied here.

Suppose we increase y−i while keeping yi = 0. Replacing in ψ−i(α−i, x, y)

we obtain

ψ−i(α−i, x, y) =
1
3
(L− x−i + νi − ν−i).

Again the sign of the final expression cannot be determined. In conclusion

the above analysis reveals that in contrast with the case of infinite capacities,

there is no guarantee that the forward market has an equilibrium.

A reaction curve analysis

We complete the forward-market analysis by exploring the structure of the

reaction curves of the two agents in the forward market. This analysis assumes
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that the first order conditions suffice to determine the optimal behaviour of

an agent given the action of the other, which we have seen is not necessarily

the case. We now show that even under these additional assumptions the

existence of the equilibrium is not guaranteed.

We first establish the formulas for the reaction curves of player −i and

then for player i. Note that ψ−i(ξ, x, y) is linear and increasing in ξ. Since

Ψ−i(x, y) = 0 at equilibrium, with an interior solution we know that ψi(α−i, x, y) >

0 and ψ−i(α−i, x, y) > 0. Moreover setting dΨ−i(x, y)
dyi

= 0 implies

∂Ψ−i
∂y−i

× ∂y−i
∂yi

= −∂Ψ−i
∂yi

.

We solve for ∂y−i
∂yi

after finding ∂Ψ−i
∂yi

and ∂Ψ−i
∂y−i

∂Ψ−i
∂yi

= −4
9

∫ α−i(x,y)

L
f(ξ)dξ + ψ−i(α−i, x, y)f(α−i). (54)

This is indeterminate in sign.

From (53) and (54) we can write

∂y−i
∂yi

=
−4

9

∫ α−i(x,y)

L
f(ξ)dξ + ψ−i(α−i, x, y)f(α−i)

4
9

∫ α−i(x,y)

L
f(ξ)dξ + 2ψ−i(α−i, x, y)f(α−i)

. (55)

Since both terms in the denominator are positive and the second term has a

coefficient of 2, we can infer
∂y−i
∂yi

> −1

but cannot conclude that ∂y−i
∂yi

≤ 0.

Turning now to the reaction curve of yi in response to y−i, we can state from

(44) at a candidate equilibrium

∂Ψi(x, y)
∂y−i

= −1
9

∫ α−i(x,y)

L
f(ξ)dξ − 2ψi(α−i, x, y)f(α−i)− yif(α−i) < 0.

Since
∂Ψi

∂yi
× ∂yi
∂y−i

= − ∂Ψi

∂y−i
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we get

∂yi
∂y−i

= −
+

∫ α−i

L
f(ξ)dξ + 2ψi(α−i, x, y)f(α−i) + yi f(α−i)

[4
∫ α−i

L
f(ξ)dξ + ψ(α−i, x, y)f(α−i)] +

1
2

∫ αi

α−i
f(ξ)dξ − yi

2
[f(α−i) + f(αi)]

(56)

from which we cannot derive any properties.

From (55) and (56) we see that the slopes of the reaction function do not

necessarily fall in the range of (−1, 0) that we want to see in a game. The

same relations illustrate how the properties for an equilibrium hold in the

standard Allaz-Vila case where capacities are infinite. In these equations, if

we let α =∞, and set to zero all terms except the integrals from L to ∞, we

have the reaction functions with infinite capacity, that is reaction functions

with no capacity game. In this case the slopes then fall in the range of (−1, 0)

and the game of the forward market is well behaved.

This can be illustrated graphically. Plotting ψi and ψ−i in (46) and (47),

we can see the marginal contribution to profit at each ξ. We can perturb the

variables to get a sense of how the profit forward game changes. We begin

with ψ−i.

Figure 1: Marginal contribution in the spot market of y−i as a function of ξ

at the equilibrium solution as seen in the forward market game

In Figure 1 as ξ increases, the contribution to profit increases linearly and
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then the contribution stops once capacity is reached, when z−i is equal to x−i.

Without a capacity constraint the line would continue indefinitely. We now

look at the effect of increasing yi on λ−i.

$

L α
-i

α
i

ψ
-i

ξ

Figure 2: The effect of increasing yi on λ−i

Increasing yi for ξ < α−i decreases ψ−i. We also have to take account of the

effect on α−i. Since α−i is increasing, the direction in the change in profit

is dependent on which area is larger, the decreasing area ranging over the

ξ or the increasing area associated with the change in α−i. This cannot be

ascertained ex ante and hence the outcome is ambiguous.

Plotting ψi we get Figure 3.

$

L α
-i

α
i

ξ

ψ
i

Figure 3: Marginal contribution in the spot market of yi, ψi, as a function of

ξ at the equilibrium solution as seen in the forward market game
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Note that between the α’s the contribution is negative because of the second

integral in (44), unlike Figure 1. Increasing xi enlarges αi and hence adds to

the negative area. The impact of an increase in y−i can be seen in Figure 4.

$

L α
-i

α
i

 

ψ
i

Figure 4: Effect of an increase in y−i on the marginal contribution of yi, λi

Increasing y−i decreases ψ−i in [L,α−i(x, y)] and decreases α−i(x, y). It does

not modify αi(x, y). We see that the effect is unambiguous in that the marginal

contribution decreases. This implies that player i sees its marginal profit

becoming negative as a result of an increase of yi. It reacts by decreasing y−i.

We are however unable to determine by how much. Again, note that in the

forward market game without capacity limits, the negative ψ’s between the

α’s do not exist.

These graphs show that the boundaries of the integrals, the α’s, totally

change the character of the results of the forward market and create the pos-

sibility for capacity to increase or decrease through the addition of a futures

market. They also illustrate why our results are different from Adilov (2005).

He represents demand uncertainty with the binomial distribution while we use

a continuous distribution. In this case, the changes in the vertical segments

defined by the boundary of the integrals at α−i that we have drawn in Figures

2 and 3 do not exist because the probabilities used are discrete. Thus, the

effect of changing the u’s is unambiguous.
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5.3 Necessary equilibrium conditions on the capacity market

Assume in the following that the forward market has a unique equilibrium

and let y(x) be the corresponding futures positions of the players. We want

to explore whether there is an equilibrium on the capacity market.

Let pi[x, y(x)] be the profit accruing to generator i on the capacity mar-

ket after taking the optimal forward position y(x). The equilibrium on the

capacity market must satisfy
dpi
dxi

= 0 (57)

or
∂pi
∂xi

+
∂pi
∂yi

∂yi
∂xi

+
∂pi
∂y−i

∂y−i
∂xi

= 0. (58)

Taking into account that ∂pi
∂yi

= 0 at the equilibrium on the forward market,

we obtain
∂pi
∂xi

+
∂pi
∂y−i

∂yi
∂xi

= 0. (59)

Similarly dp−i
dx−i

= 0 implies

∂p−i
∂x−i

+
∂p−i
∂yi

∂yi
∂x−i

= 0. (60)

The establishment of the necessary equilibrium conditions on the capacity

market therefore requires computing

(i) ∂pi
∂xi

and ∂p−i
∂x−i

(ii) ∂pi
∂y−i

and ∂p−i
∂yi

(iii) ∂yi
∂x−i

and ∂y−i
∂xi

.

We here discuss the equilibrium on the capacity market when the assumed

equilibrium on the forward market is a corner solution. The formula for the

interior solution are given in Appendix A1.
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5.3.1 The forward market has a corner equilibrium

Recall that this equilibrium is characterized by

yi = 0; y−i ≥
1
2
[3x−i − νi + 2ν−i − L].

We immediately obtain

∂yi
∂x−i

= 0;
∂y−i
∂xi

= 0.

The necessary equilibrium conditions on the capacity market reduce to

∂pi
∂xi

=
∂p−i
∂x−i

= 0 (61)

which look similar to the equilibrium solutions obtained when there is no

forward market. The equilibrium is not the same though, because player −i
has a non-zero position on the forward market. The equilibrium condition for

player i can be stated as
∫ U

αi

(ξ − 2xi − x−i − νi)f(ξ)dξ − ki = 0 (62)

where

αi = 2xi + x−i + νi (63)

since yi = 0. These conditions are again equivalent to

αi(x) = 2xi + x−i + νi = αi (64)

where αi is a solution of
∫ U

α
(ξ − α)f(ξ) = ki

that must satisfy αi ≤ U . This equilibrium condition is thus identical to the

one obtained when there is no forward market.

The equilibrium conditions of x−i are different and are

1
2

∫ αi

L
(ξ − 2x−i + νi − 2ν−i)f(ξ)dξ

+
∫ U

αi

(ξ − xi − 2x−i − ν−i)f(ξ)dξ − k−i = 0
(65)
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or
1
2

∫ αi

L
ξf(ξ)dξ +

∫ U

αi

ξf(ξ)dξ

= k−i + 1
2(−2x−i + νi − 2ν−i)(αi − L)

−(xi + 2x−i − ν−i)(U − α−i)

(66)

which, because αi is known, is a linear expression in xi and x−i. The candidate

capacity equilibrium for a corner equilibrium on the forward market is thus

found by solving a linear system of equations.

We now verify the second order conditions

∂2pi
∂x2

i

= −2
∫ U

αi

f(ξ)dξ < 0

∂2p−i
∂x2
−i

= −1
22

∫ αi

L
f(ξ) + 1

2(αi − 2x−i + νi − 2ν−i)f(α)

−2
∫ U

αi

f(ξ)dξ − (αi − xi − 2x−i − ν−i)f(α)

= −
∫ αi

L
f(ξ)dξ − 2

∫ U

α
f(ξ) +

(
−αi2 + xi + x−i +

νi
2

)
f(αi)

= −
∫ αi

L
f(ξ)dξ − 2

∫ U

αi

f(ξ)dξ + xi2 f(αi)

(67)

which is again of undeterminate sign. As with the forward market, it is im-

possible to ascertain ex ante the existence of an equilibrium solution.

5.3.2 Using the reaction functions in the capacity game

We examine the qualitative properties of how the capacities change with the

addition of a forward market. We use the reaction fucntions in the capacity

game to examine how the solution changes from the equilibrium without a

futures market. From (63) given the capacity x−i from the model without

a forward market, xi from this same model is the optimal capacity in the

model with a forward market as yi = 0. The left side of (65) evaluated with

the capacities set at the levels from the model without a forward market tells

us the direction of change in the capacity of player −i. If this expression

is positive (negative), then the capacity x−i will increase (decrease) and the

effect of a change in x−i on xi will determine the total change in capacity.

28



Note that the equilibrium condition of the capacity market in the game with

no forward market, (40), differs from (66) only in the lower limit of the first

integral, α−i versus L. Substracting (40) from the left side of (66), leads to

the following,

∂p−i
∂x−i

=
1
2

∫ α−i

L
(ξ − 2x−i + νi − 2ν−i)f(ξ)dξ. (68)

At

ξ = α−i = 3x−i + 2ν−i − νi. (69)

We have

ξ − 2x−i − 2ν−i + νi = xi > 0. (70)

For small ξ the term in the integral can be negative. Thus, we cannot deter-

mien the sign of ∂p−i
∂x−i

in general. Nevertheless, we can determine the response

of xi to a change in x−i.

Taking the derivative of (64) with respect to xi, we get

∂xi
∂x−i

= −1
2
. (71)

Repeating the process by taking the derivative (65) with respect to xi yields

∂x−i
∂xi

= −1
2
. (72)

Thus, with the inclusion of forward markets, if (68) is positive, total ca-

pacity increases, and if (68) is negative, total capacity decreases. As we see

in the numerical experiments, we can generate cases that lead to (68) having

either sign.

5.3.3 The interior solution on the forward market

The necessary equilibrium conditions on the forward market are given in ap-

pendix. They are amenable to a numerical treatment (see next section) but

do not lead to any general property.
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5.4 Conclusion

In contrast with the neat Allaz-Vila type result obtained in Section 3, the

introduction of capacities destroys all properties of the forward market and

hence does not permit us to arrive at general properties of the capacity market

equilibrium. Neither the equilibrium on the forward market nor the capacity

market is guaranteed to exist. The model is still amenable to numerical solu-

tion, which we do next.

6 Numerical investigation

In this section we illustrate the possible consequences of adding a forward

market using numerical examples, that is, moving from the two to three-

stage model. Specifically, we show that a forward market can increase or

decrease investments, with the result that its final impact on market power

is ambiguous. The section is organized as follows. We first introduce a test

problem based on realistic situations found in Europe. We then consider the

case of an asymmetric situation that can relate to the competition between

coal and gas utilities. We then take up two symmetric problems that we can

relate to the competition between two utilities operating the same types of

plants.

6.1 The test data

6.1.1 Demand assumptions

Consider a reference system with annual average hourly demand of 60 GW.

We introduce a randomized demand function as follows. Suppose an instan-

tanenous (in fact hourly) demand function

p = ξ′ − βq′
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where ξ′ is uniformly distributed in an interval [L,U ]

p is expressed in ⊂=/Mwh

q′ is expressed in Gwh
In order to calibrate the system we assume that hourly demand varies

randomly (or depending on the time of the year) between 40 and 80 Gwh at a

price of 50 ⊂=/Mwh as a result of ξ taking its value in [L,U ]. This is stated as

50 = ξ′ − βq′, q′ ∈ [40, 80].

Let q′(ξ) be the value of q′ when the price is 50 ⊂=/Mwh. Assuming an elasticity

of .2 at the point p = 50 ⊂=/Mwh, q = 50Gwh and a constant β, we impose

.2 =
1
β

or β = 5, and obtain

ξL = 50 + 40× 5 = 250

ξU = 50 + 80× 5 = 450.

One can easily check that this corresponds to an elasticity decreasing from .25

to .125 when ξ increases from ξL to ξU , the corresponding demand is 40 and

80 Gwh and the price remains 50 ⊂=/Mwh, a behavior that is realistic. We can

then rewrite the system

p = ξ − 5q′

as

p = ξ − q

by measuring q in 200 Mwh: a demand of 40 Gwh corresponds to 200 “200

Mwh”. With ξ = ξL = 250 this gives a price of 250-200 = 50 ⊂=/Mwh.

6.1.2 Cost assumptions

We consider a market with two technologies, namely coal and combined-cycle

gas turbines. The cost assumptions used for these technologies are taken from

IEA (2005, table A10.2 page 227) after rounding. The annual fixed costs of

the CCGT and Coal plants are obtained as follows
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CCGT 5.75 (“Cost of Capital”) + 2.33 (“Fixed O and M Costs”)

∼ 8 ⊂=/Mwh

Coal 12.65 (“Cost of Capital”) + 3.50 (“Fixed O and M Costs”)

∼ 16 ⊂=/Mwh

Fuels costs are then established as

CCGT 19.6 (“Fuel Costs”) + 1.5 (“Variable O and M cost”)

+ 7.344 (“CO2 cost”) ∼ 28 ⊂=/Mwh

Coal 14.93 (“Fuel Cost”) + 3.3 (“Variable O and M cost”)

+ 17.028 (“CO2 cost”) ∼ 35 ⊂=/Mwh

These figures are based on gas and coal prices of 3 and 1.66 ⊂=/GJ respec-

tively (which correspond roughly to 3 and 1.66 $/MMbtu). These data can

easily be updated to reflect current conditions. We leave a systematic analysis

of competitive conditions to a further paper and retain the IEA assumptions

in this work.

6.2 Solution approach

The model takes the form of nonlinear equations that are solved in EXCEL.

The nonlinear equations are based on expressions that assume α−i < αi. It is

not known in advance which plant reaches its capacity limit first in operations

and hence whether i is associated with coal or gas units. We thus proceed by

assuming an assignment of coal and gas to i and −i respectively (intuitively

coal should reach its capacity limit before gas) and verify afterwards that

the inequality α−i < αi is satisfied. Note that we can think of three sets of

necessary conditions that correspond to

αgas < αcoal
αcoal < αgas

αcoal = αgas
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6.3 Asymmetric costs

We solved the necessary equilibrium conditions for both the capacity expansion

model without and with a forward market and tested that we found a true

equilibrium through varying the solutions and using second-order conditions

in the futures market. Results are given after rescaling to the original units

(that is, in GW of installed capacities and Gwh of hourly production).

Capacity (in Gw) α Profit (106 ⊂=/h)

Gas 25.43 393.4 2.390

Coal 22.22 375.3 1.848

Total 47.65 4.238

Table 7.1.: Equilibrium without futures market

In this solution the player with the gas capacity builds more than the coal

player, has 30 % higher profits, and operates below capacity for higher values

of ξ than the coal player.

Capacity (in Gw) Futures in Gwh α Profit (106 ⊂=/h)

Gas 24.11 0 393.5 1.911

Coal 24.88 16.6 250 1.985

Total 49 3.896

Table 7.2.: First equilibrium with a futures market

The introduction of a futures market slightly increases the invested capac-

ity. The level at which gas capacity is fully utilized is ξ ≥ 393.5 while the

coal capacity is fully utilized for all levels of ξ. Total profits drop to 3.896 106

⊂=/hour. However, the coal player increases its profits at the expense of the

gas player.
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Profits are huge (profits of 4 106 ⊂=/h for an hourly demand of 50 Gwh lead

to profits of 80 ⊂=/Mwh. This is due to the low (in absolute value) elasticity

(from .25 to .125) for a long term problem and the Cournot assumption. Even

though these values seen unrealistic for a long term problem, they correspond

to those obtained by most authors when looking at market power.

The equilibrium with a futures market is a corner solution in that the

coal player takes a futures position that fully utilizes all of its capacity for all

potential demand levels and drives the other player from the futures market.

The coal player comes out ahead of the gas player and garners greater profits

than in a situation with no futures market. This solution is anomalous in

that the higher-cost player increases its position at the expanse of the lower-

cost player. This can happen because a large futures position can completely

block the other player from entering the futures market. That is, the Cournot

assumption that the other player does not respond in the futures game actually

obtains in this case.

It is also true that the other corner solution is an equilibrium with gas

capacity operating for all levels of ξ and the coal player out of the futures

market. This equilibrium is shown in the following table. ù

Capacity (in Gw) Futures in Gwh α Profit (106 ⊂=/h)

Gas 27.43 40 250 2.629

Coal 19.82 0 370.4 1.389

Total 47.25 4.019

Table 7.3.: Second equilibrium with a futures market

Note that in this corner solution total capacity declines from the case with no

futures equilibrium. Thus, with the parameters we have chosen, we get two

corner equilibria, one where total capacity is increased and the other where
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total capacity is decreased. We see that anything can happen to total capacity

within the same example.

One of the issues raised with the Allaz Vila model without capacity limits

is that the decision to enter or not enter the futures market is a Prisoners

dilemma game because both players are worse off. However, with the corner

equilibrium, the result is not a Prisoners dilemma solution because the player

that operates at capacity for all alphas improves its profit at the expense of

the other player.

The following table contains the prices at the upper limit, U , and the lower

limit, L, on the probability distribution.

U L

No futures equilibrium 212 104

First futures equilibrium 205 77

Second futures equilibrium 214 74

Table 7.4.: Priceis for the upper and lower limits of the probability

distribution

We see that addings a forward market can either raise or lower the price

at the upper limit of the probability distribution, depending on the change in

total capacity. In both cases the price is lower at the lower levels of demand

because of positive futures position increases spot production when capacity

is not binding (the usual Allaz-Vila phenomenon). The price at the upper

limit gives a sense of the effect of adding a forward market during the peak

period in electricity generation because capacity is at or near capacity in the

peak period. The effect on prices in base-load periods of a load duration curve

would not be as dramatic as our results because there is a separate futures
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market for the base-load time slices and a corner solution is unlikely to occur

then.

6.4 Symmetric costs

We consider two symmetric cases where both players have the same costs. We

represent respectively the competition of two coal and two gas firms.

6.4.1 Competition of two gas firms (k = 8, ν = 28)

We solve for the capacity equilibrium both without and with forward markets.

With these parameters we find two equilibria. However, one is interior and one

is at a corner. The interior solution is almost a corner solution. We checked

the validity of the interior solution by varying the y’s and the x’s and found

that the profit is at its peak in both the futures and capacity games. The

result holds even though the profit difference is in the eighth decimal place

between the interior and the corner solutions. The second-order conditions for

the futures market for each player also hold. The results are as follows

Capacity (in Gwh) α Profits in 106 ⊂=
Gas 1 24.36 393.4 2.241

Gas 2 24.36 393.4 2.241

Total 48.72 4.482

Table 7.5: Equilibrium without forward market

The solution without a futures market is symmetric. However, adding a futures

market leads to an asymmetric equilibrium. Since either player can be labeled

Gas 1, an asymmetric equilibrium implies two possible equilibria.
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Capacity (in Gwh) Futures in Gwh α Profits in 106 ⊂=
Gas 1 25.44 .002 393.42 2.174

Gas 2 22.20 11.1 250.04 2.253

Total 47.64 4.427

Table 7.6: First equilibrium with a forward market

Here the introduction of the forward market decreases the total investment in

this equilibrium.

Capacity (in Gwh) Futures in Gwh α Profits in 106 ⊂=
Gas 1 22.78 0 393.42 1.669

Gas 2 27.52 30 250 2.427

Total 50.30 4.096

Table 7.7: Second equilibrium with a forward market

Again, we checked to make sure this is an equilibrium by varying the x’s around

the solution. Unlike the interior solution, total capacity increases. The next

table presents the prices.

U L

No futures equilibrium 206 102

First futures equilibrium 212 84

Second futures equilibrium 198 70

Table 7.8: Prices for the upper and lower limits of the probability distribution

As before the corner solution can lead to higher or lower prices at U and

leads to lower prices at L.
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6.4.2 Competition between coal firms (k = 16, ν = 35)

As in the other examples, we solve for the necessary equilibrium conditions

for the capacity expansion model both without and with a forward market

and check that we have a solution by varying values around the optimum and

usign the second-order conditions for interior solutions. The results are given

in Tables 7.9 and 7.10.

Capacity (in Gwh) α Profits in 106 ⊂=
Coal 1 22.33 379 2.022

Coal 2 22.33 379 2.022

Total 44.66 4.044

Table 7.9: Equilibrium without forward market

Capacity (in Gwh) Futures in Gwh α Profits in 106 ⊂=
Coal 1 21.05 0 370.1 1.600

Coal 2 24.91 15.87 250 2.172

Total 45.96 3.772

Table 7.10: Equilibrium with forward market

In this case, a futures market increases capacity.

U L

No futures equilibrium 227 107

With futures equilibrium 220 93

Table 7.11: Prices for the upper and lower limits of the probability

distribution
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6.5 Another symmetric case

So far, we have not presented a case with just an interior solution and no

boundary solution. We now present such a case. Here we use the costs for the

coal pant and reduce L to 50 from 250. The effect of lowering L increases the

cost of being at capacity for each ξ because prices are very low at the low ξ

and production is much higher than would be the case at the duopoly solution

for that ξ.

Solving this case for the market without and with a forward market, we

obtain

Capacity (in Gwh) α Profits in 106 ⊂=
Caal 1 20.12 336.86 1.082

Coal 2 20.12 336.86 1.082

Total 40.24 2.164

Table 7.12: Equilibrium without forward market

Capacity (in Gwh) Futures in Gwh α Profits in 106 ⊂=
Coal 1 21.22 3.81 315.92 1.103

Coal 2 17.60 5.19 266.46 .981

Total 38.82 2.084

Table 7.13: Equilibrium with forward market

To check that there is no corner equilibrium, we did the following. In our

model we set yi = 0 and y−i to a large number so that we have the corner

solution for a range of capacity levels. We then varied the x’s to find the

capacity equilibrium given the corner solution from the futures position. We
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then tested to see if these capacities could produce a corner equilibrium in the

futures market. We found that at these capacities player −i, in optimizing

its futures position, reduced y−i below the level necessary to have a corner

solution. Thus, there is no corner equilibrium with these parameters.

In this case, the futures market leads to a decrease in total capacity.

7 Conclusions

Market power is a recurrent concern in restructured electricity markets. The

common wisdom is that incumbent generation companies have market power

and will eventually exercise it. Resource adequacy is an emerging concern:

restructured electricity markets may not provide sufficient incentives for in-

vestments. Market power may add to the effect, as restricting capacities is an

obvious way to exercise and reinforce market power. Forward contracts have

appeared as an ingenious remedy in that context. Besides offering hedging

possibilities, they are commonly seen as good instruments to mitigate market

power, Joskow (2006) and Wolak (2000). Following the seminal contribution

of Allaz and Allaz-Vila, a whole stream of literature argues that position. We

show that the situation is much less clear than usually assumed.

The good properties of long-term contracts have indeed been established

under ideal situations; they are either eoxgenously given as in the early electric-

ity literature, or endogenously determined in a market with infinite capacities.

We show that endogenously limiting capacities can destroy the ability of for-

ward contracts to mitigate market power. In Part 1 we indicated that forward

contracts have no effect when future demand is known. We prove here that

they have an undetermined effect when demand is unknown at the time the

investment and forward positions are taken.

Although we do not have a load curve in our model, the results are broadly
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applicable to pricing at the peak, the time of day when markets are most

susceptible to market power. Given the high levels of demand at or near

the peak, corner solutions can create opportunities for a player to keep other

players out of the futures market and potentially limit capacity to levels below

what would be case without a futures amrket.

Our results also show the conceptual difficulties of making broad conclu-

sions about complicated markets using simple models. We have results that

lead to the three possible outcomes that can occur by making natural modi-

fications to models. Allaz and Vila show that futures markets increase com-

petition. Adilov (2005) shows that additing a capacity constraint increases

market power using a binomial distribution of demand. We show that the

result is ambiguous when we use the assumption of a continuous demand dis-

tribution. This serves as a caution when generalizing theoretical results in

modeling abstractions as the basis for forming government policy.
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Appendix

The appendix consists of two parts. Appendix A1 reports the formula of the

interior equilibrium solution. Appendix A2 specializes all equilibrium formula

to the case of the uniform distribution.

Appendix A1

Computation of
∂pi
∂xi

and
∂p−i
∂x−i

∂pi
∂xi

=
∫ ∞
αi

(ξ − 2xi − x−i − νi)f(ξ)dξ − ki (A.1)

and
∂p−i
∂x−i

= 1
2

∫ αi

α−i
(ξ − 2x−i + νi − 2ν−i − yi)f(ξ)dξ

+
∫ ∞
αi

(ξ − xi − 2x−i − ν−i)f(ξ)dξ − k−i
(A.2)

Computation of
∂pi
∂y−i

and
∂p−i
∂yi

We have respectively

∂pi
∂y−i

= −1
9

∫ α−i

0
(2ξ + yi − 2y−i − 4νi + 2ν−i)f(ξ)dξ (A.3)

∂p−i
∂yi

=
1
9

∫ α−i

0
(ξ − yi − 4y−i + νi − 2ν−i)f(ξ)dξ) (A.4)

− x−i
2

∫ αi

α−i
f(ξ)dξ.

Computation of
∂yi
∂x−i

and
∂y−i
∂xi

These expressions are obtained by perturbing xi and x−i in the forward market

equilibrium conditions
∂pi
∂yi

=
∂p−i
∂y−i

= 0.
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This is done as follows

(i) Perturbations with respect to xi

Consider first the equilibrium condition

0 = ∂pi
∂yi

= 1
9

∫ α−i(x,y)

0
(ξ − 4yi − y−i − 2νi + ν−i)f(ξ)dξ − yi2

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ.

We write

0 = ∂2pi
∂xi∂yi

= 1
9

∫ α−i(x,y)

0
−

(
4∂yi
∂xi

+ ∂y−i
∂xi

)
f(ξ)d(ξ)

+ 1
9

[
(α−i(x, y)− 4yi − y−i − 2νi + ν−i)f(α−i(x, y))

]
∂α−i
∂xi

− 1
2
∂yi
∂xi

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ − yi2

[
f(αi)

∂αi
∂xi
− f(α−i)∂α−i∂xi

]

or (
4∂yi
∂xi

+ ∂y−i
∂xi

)∫ α−i(x,y)

0
f(ξ)dξ

+ 9
2
∂yi
∂xi

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ − 9yif(αi) = 0

(A.5)

This gives a first relation involving ∂yi
∂xi

and ∂y−i
∂xi

.

Consider now the equilibrium condition

0 = ∂p−i
∂y−i

=
∫ α−i(x,y)

0
(ξ − yi − 4y−i + νi − 2ν−i)f(ξ)dξ = 0.

We write

0 = ∂2p−i
∂xi∂y−i

= −
(
∂yi
∂xi

+ 4∂y−i
∂xi

)∫ α−i(x,y)

0
f(ξ)dξ = 0

or
∂yi
∂xi

+ 4
∂y−i
∂xi

= 0 (A.6)

which is a second relation involving ∂yi
∂xi

and ∂y−i
∂xi

.
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For the particular case of the uniform distribution the relations reduce

to (
4
∂yi
∂xi

+
∂y−i
∂xi

)
(α−i − L)− 9

2
∂yi
∂xi

(αi − α−i) + 9yi = 0

and
∂yi
∂xi

+ 4
∂y−i
∂yi

= 0.

(ii) Perturbation with respect to x−i

Consider again the equilibrium condition ∂pi
∂yi

= 0. We write

0 = ∂2pi
∂x−i∂yi

= −1
9

(
4 ∂yi
∂x−i

+ ∂y−i
∂x−i

)∫ α−i(x,y)

0
f(ξ)dξ

+ 1
9(α−i(x, y)− 4yi − y−i − 2νi + ν−i)f

(
α−i(x, y)

)
∂α−i
∂x−i

− 1
2
∂yi
∂x−i

∫ αi(x,y)

α−i(x,y)
f(ξ)dξ − yi2

[
f(αi(x, y)

∂αi
∂x−i

− f
(
α−i(x, y)

∂α−i
∂x−i

)]

or (
4 ∂yi
∂x−i

+ ∂y−i
∂x−i

)∫ α−i(x,y)

0
f(ξ)dξ

− 3(α−i − 4yi − y−i − 2νi + ν−i)f(α−i)

+ 9
2
∂yi
∂x−i

∫ αi

α−i
f(ξ)dξ

− 27
2 yi[f(α−i)] = 0

+ 9
2yi[f(αi)] = 0

(A.7)

which is a first relation involving ∂yi
∂x−i

and ∂y−i
∂x−i

.

Turning now to the equilibrium condition

0 = ∂p−i
∂y−i

=
∫ α−i(x,y)

0
(ξ − yi − 4y−i + νi − 2ν−i)f(ξ)dξ.
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We write

0 = ∂2p−i
∂x−i∂y−i

=
∫ α−i(x,y)

0
−

(
∂yi
∂x−i

+ 4∂y−i
∂x−i

)
f(ξ)dξ

+ (α−i(x, y)− yi − 4y−i + νi − 2ν−i)f(α−i)
∂α−i
∂x−i

−
(
∂yi
∂x−i

+ 4∂y−i
∂x−i

)
(A.8)

or
∫ α−i(x,y)

0
f(ξ)dξ+ 3(α−i(x, y)− yi− 4y−i + νi− 2ν−i)f(α−i) = 0 (A.9)

which is a second relation involving ∂yi
∂x−i

and ∂y−i
∂x−i

.

Appendix 2: The uniform distribution

The appendix reports all formula relative to the treatment of the uniform

distribution.

Appendix A2.1

This gives for the particular case of uniform distribution

∂pi
∂y−i

= − 1
9(U − L)

{
2
[
ξ2

2

]α−i
L

+ (yi − 2y−i − 4νi + 2ν−i)(α−i − L)
}

= − 1
9(U − L)

[
(α2
−i)− L2) + (yi − 2y−i − 4νi + 2ν−i)(α−i − L)

]

∂p−i
∂yi

= 1
9(U − L)

{(
ξ2

2

)α−i

L

− (yi + 4y−i − νi + 2ν−i)(α−i − L)
}

− x−i
2(U − L)(αi − α−i)

= 1
(U − L)

{
1
18(α2

−i − L2)− 19(yi + 4y−i − νi + 2ν−i)(α−i − L)
}

− x−i
2(U − L)(αi − α−i).

For the particular case of the uniform distribution, these relations reduce
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to (
4 ∂yi
∂x−i

+ ∂y−i
∂x−i

)
(α−i − L)− 3(α−i − 4yi − y−i − 2νi + ν−i)

+ 9
2
∂yi
∂x−i

(αi − α−i)− 27
2 yi = 0

and
(
∂yi
∂x−i

+ 4
∂y−i
∂x−i

)
(α−i − L) + 3(α−i − yi − 4y−i + νi − 2ν−i) = 0.

Appendix A2.2: The pure capacity market: first and second order

conditions

Take f(ξ) = 1
U − L where L and U indicate lower and upper bound of ξ. We

have for ∂pi
∂xi ∫ ∞

αi

(ξ − 2xi − x−i − νi)f(ξ)dξ − ki

= 1
U − L

[
ξ2

2

]U
αi

− U − αiU − L (2xi + x−i + νi)− ki = 0

or
1

2(U − L)
(U2 − α2

i )−
U − αi
U − L (2xi + x−i + νi)− ki = 0.

or
U2 − α2

i

2
− (U − αi)(2xi + x−i + νi)− ki(U − L) = 0.

Note that αi = 2xi + x−i + νi and hence

U2 − α2
i

2
− (U − αi)αi − ki(U − L) = 0

or

(U − αi)
[
U + αi

2
− αi

]
− ki(U − L) = 0

or

(U − αi)2 = 2ki(U − L)⇒ αi = U ±
√

2ki(U − L).

The second order condition for the equilibrium is

∂

∂xi

[
U − αi)2 − 2ki(U − L)

]
≤ 0
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or

2(U − αi)(−2) ≤ 0

or

U − αi ≥ 0.

Therefore the equilibrium is reached for αi = U −
√

2ki(U − L).

We also have for ∂p−i
∂x−i

1
2

∫ αi

α−i
(ξ − 2x−i + νi − 2ν−i)f(ξ)dξ

= 1
2(U − L)

[
α2
i − α2

−i
2 − (2x−i − νi + 2ν−i)(αi − α−i)

]

∫ ∞
αi

(ξ − xi − 2x−i − ν−i)f(ξ)dξ

= 1
U − L

[
U2 − α2

i
2 − (xi + 2x−i + νi)(U − αi)

]
.

In total

1
U − L

[
1
4(α2

i − α2
−i)−

αi − α−i
2 (2x−i − νi + 2ν−i)

+ U2 − α2
i

2 − (xi + 2x−i + ν−i)(U − αi)− k−i
]

= 0.

∂p−i
∂x−i

= 1
2

[(
α2
i − α2

−i
2

)
− (αi − α−i)(2x−i − νi + 2ν−i)

]

+ U2 − α2
i

2 − (U − αi)(xi + 2xi + ν−i)− k−i(U − L).

The first order condition can thus be restated as

[3(αi − U)2 + 3U2 − 2αi(2ν−i − νi)− 12k−i]

− 2[3U − αi − (2ν−i − νi)]α−i + α2
−i = 0.

In order to verify the second order condition, we derive the expression. This

gives with respect to x−i

6(αi − U) ∂αi
∂x−i

− 2(2ν−i − νi) ∂αi∂x−i

− 2α−i
(
− ∂αi
∂x−i

)
− 2[3U − αi − (2ν−i − νi)]∂α−i∂x−i

+ 2α−i
∂α−i
∂x−i
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or

6(2xi + x−i + νi − U)− 2(2ν−i − νi) + 2(2x−i + 2ν−i − νi)
− 6[3U − 2xi − x−i − νi − 2ν−i + νi) + 6(3x−i + 2ν−i − νi)

Second order condition

∂pi
∂xi

= (U − αi)2 − ki
∂p−i
∂x−i

= [3(αi − U)2 + 3U2 − 2αi(2ν−i − νi)− 12k−i]

− 2[3U − αi − (2ν−i − νi)]α−i + α2
−i

∂2pi
∂x2

i

= −2(U − αi)
(
∂αi
∂xi

)
= −4(U − αi)

always satisfied if

2xi + x−i + νi ≤ 0.

∂2p−i
∂x2
−i

= ∂
∂αi

(
∂p−i
∂x−i

)
∂αi
∂x−i

+ ∂
∂α−i

∂p−i
∂x−i

∂α−i
∂x−i

∂i
∂x−i

= 1; ∂α−i
∂x−i

= 3

[3(αi − U)(2)− 2(2ν−i − νi) + 2α−i]

− 2[3U − αi − (2ν−i − νi)]3 + 2α−i(3)

= 6(2xi + x−i + νi − U)− 2(2ν−i − νi) + 6x−i + 4ν−i − 2νi

− 6(3U − 2xi − x−i − νi − 2ν−i + νi) + 6(3x−i + 2ν−i − νi)
= 12xi + 6x−i + 6νi − 6U − 4ν−i + 2νi + 6x−i + 4ν−i − 2νi

− 18U + 12xi + 6x−i + 6νi + 12ν−i − 6νi + 18x−i + 12ν−i − 6νi

= 24xi + 36x−i − 24U + 24ν−i

2xi + 3x−i − 2U + 2ν−i

Second order verified if

xi +
3
2
x−i + ν−i ≤ U

which results from

α−i(x) ≤ αi(x) ≤ U.
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Appendix A2.3: the forward market

∂pi
∂yi

= 1
9

[
(α2
−i − L2

2 − (α−i − L)(4yi + y−i − 2νi + ν−i

]
− yi2 (αi − α−i) = 0

∂pi
∂y−i

= 1
9

[
(α2
−i − L2

2 − (α−i − L)(yi + 4y−i + νi − 2ν−i)
]

= 0

α−i = 3x−i + 2ν−i − νi − (2y−i − yi) = a−i − (2y−i − yi)
αi = 2xi + x−i + νi − yi

i) The corner solution

Note that

α−i = L of
∂p−i
∂y−i

= 0

always satisfy the first order conditions

ii) The non corner solution

Eliminating the corner solution, we rewrite the first order conditions as

α2
−i − L2

2 − (α−i − L)(4yi + y−i − 2νi + ν−i)− 9
2yi(αi − α−i) = 0

α−i + L
2 − (yi + 4y−i + νi − 2ν−i) = 0.
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