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Complementarity Problems and Stochasticity



Complementarity Problems vis-a-vis Optimization and
Game Theory Problems

Complementarity
Problems

NLP

Other non-optimization
based problems

~e.g., spatial price
- equilibria, traffic
equilibria, Nash-
Cournot games, zero-
finding problems




Equilibrium Problems Expressed as
Mixed Nonlinear Complementarity Problems

(Mixed) Nonlinear Complementarity Problem MNCP
Having a function F : R" — R",find an x e R", y € R™ such that
F(xYy)20,%20,F(xy)*x=0fori=1...,n,
F(x,y)=0,y; free, for i=n +1,...,n
Example

F(X,X,,Y,) X, + X,

F(prza y1) — FZ(XI,Xz, yl)
F3(X1,X2,yl) X1+X2+y1_2

X, =Y, so we want to find X, X,, Y, s.t.

X +X, >0 20 (X +X)*
Xl_ylzo X220 ()(1_y1)>X<
X\ +X +Yy,—2=0 vy free
One solution: (X, X,,Y,) =(0,2,0), why? Any others?
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Nonlinear Programs Expressed as
Mixed Nonlinear Complementarity Problems

Consider a generic nonlinear program and its resulting KKT conditions
min f (X)
st.g;(x)<0,i=L...m (u,)
h,()=0,j=1....,p (v;)
KKT conditions, find X e R",0 € R",v € RPst.

O\%i (Y)+Zm:LTngi(7)+Zp:\7thj(7) =0

(i)g,(X) <0, >0,9.(X)u, =0, foralli=1,...,m¢;
(1l)h;(X)=0,v; free, forallj=1,...,p

N

. J



Nonlinear Programs Expressed as
Mixed Nonlinear Complementarity Problems

Thus, we get a mixed NCP as follows:

[ m p
ooy |V (X)+ D U Vg, (X)+ D v, Vh.(X)
X i=1 j=1

Flu|= —g.(x),1=1,...,m
V) h;(X), ]=1,...,p

m P
VE(X)+ > u Vg, (X)+ D v,Vh (x)=0 X free
i=1 j=1

~g:(x)=0,i=1,...,m u; >0,(—g;(x))*u; =0
h;(X)=0,]=1,...,p v, free



Producer Duopoly Expressed as
Nonlinear Complementarity Problems

-Two producers competing with each other

on how much to produce given as g.,1 =1,2

- Market Inverse demand function

p(q, +9,) =a - f5(q, +0d,), where a,5>0

that the producers can manipulate by their production

- Production cost function

G (Qi):%qiai =1,2, where ;>0



Producer Duopoly Expressed as
Nonlinear Complementarity Problems
Producer 1's optimization problem:

max (a - p(Qq, + qz))* Q, =4,
st.q, >0

KKT conditions:
Find q, s.t. 2ﬁq1 +:Bq2 -ty >0 G >0 (2ﬂq1 +:Bq2 'a+7/1)q1 =0

For Producer 2, similar idea, that is:
Find g, s.t. 20, + f5q,-a+y,20 ¢, 20 (2:Bq2 + /4, ‘a+7/2)q1 =0

Need to solve both at same time (why?) to get the resulting pure NCP

F(qu:£2ﬂql+ﬂq2-a+%j
d, 2[4q,+ /60, -a+y,

Can generalize to N players, will get a Nash-Cournot equilibrium
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Example of an Equilibrium Problem
Energy Market Equilibria: PIES
(Cottle, Pang, Stone)

As a result of the energy crisis in the US 1n the mid 1970’s
the Project Independence Evaluation System (PIES) energy
model was developed

Models a competitive market with two sets of players
(agents): suppliers and consumers

Given a perceived demand, suppliers solve a related LP

Consumers demand is a function of all energy prices and
given by an econometrically-derived demand equation

Several later versions: Intermediate Future Forecasting
System (1980’s), National Energy Modeling System (1990°s-
present)
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Example of an Equilibrium Problme
Energy Market Equilibria: PIES

1. Supply Side
min ¢' X ! total cost of production
st where

: C = vector of prod. costs
Ax>(q !demand, dual price: P

Bx>b !'non-demand
X=>0

q = demand quantities
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Example of an Equilibrium Problem
Energy Market Equilibria: PIES

2.Demand Side
where

( J Ze” ln[ il Jor g/ =reference demand for product i
oF j=1

p. = reference price for product i

n IJ . . .
g ( p) =q .O H (%} € = clasticities

j=1 \_Mi
(3) Equilibrejlting condition
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Equilibrium Problems Expressed as
Mixed Nonlinear Complementarity Problems

PIES 1s an example of a pure NCP

Conditions taken component-wise or by vectors it's the same, why?
c—-A'7-B'y>0 x=0 (C—AT7Z'— BTy)T X=0
AX—C](?Z')ZO 720 (Ax—q(ﬂ))Tﬂzo
Bx-b>0  y >0  (Bx-b) y=0
Thus, the function F 1s defined as follows:
X c-A'z-B'y

F| 7 |= AX—CI(ﬂ')
y Bx—b
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World Gas Model- Overview



The Natural Gas Supply Chain
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Producer’s Problem

¢ Maximize production revenues less production costs
S.t.

— bounds on production rates

— bounds on volume of gas produced in time-window of analysis

¢ Decision Variables

— How much to produce in season and year (cubic meters/day)

¢ Market Clearing

— Producers’ sales must equal Trader’s purchases from Producer

16



Trader’s Problem

¢+ Maximize selling revenues less - ‘ ‘

purchase costs from domestic producer
and neighboring traders

¢ st

— material balances, including international pipeline losses
¢ Decision Variables

— How much to sell in season and year (cubic meters/day)

— How much to buy from producers and neighboring transmitters (cubic meters/day)
¢ Market Clearing:

— Sales must equal Purchases of (domestic) Marketers, Storage, LNG Liquefaction
and (neighboring) Traders

17



Trader Characteristics

Interfaces between '

producers and end-user markets

-)

Separate entity 1

‘Dedicated trading companies for each producer’

Mimics some market aspects better than ‘producer’- ‘marketer’
only

Allows easier incorporation separate low/high calorific markets

18



LNG Liquefier Problem

¢+ Maximize revenues from selling LNG to
Regasifiers less purchase, liquefaction and distribution costs
S.1.

— bounds on liquefaction capacity

— material balance including liquefaction losses
¢ Decision Variables

— How much to buy from the Trader

— How much to sell to each LNG Regasifier
¢ Market Clearing

— Sales to a specific Regasifier must equal Purchases by specific
Regasifier from this Liquefactor
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LNG Regasifier Problem

Maximize revenues from selling regasified LNG
to marketers and storage less transport and regasifaction costs

S.t.

— Regasification capacity

— Material balance including transport and regasification losses
Decision Variables

— How much to sell

— How much to buy from each liquefactor
Market Clearing

— Sales must equal Purchases from this Regasifier by each Marketer and each
Storage operator

(Actually LNG Regasifier operators don’t buy and sell gas but Regasification
services to marketers. Similar to ‘Storage operator’)

20



Pipeline Operator’s Problem

¢ Maximize congestion revenues

S.1.

— capacity bounds on flow

¢ Decision Variables

— How much capacity to sell to traders (in each season and year)

¢ Market Clearing

— Capacity sold to traders must equal capacity purchased by traders
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Storage Reservoir Operator’s
Problem

¢ Maximize net revenues from marketers less injection costs,

distribution costs, and purchasing costs from trader and
LNG Regasification

S.t.
— volumetric bound on working gas
— maximum extraction rate bound
— maximum injection rate bound
— annual injection-extraction balancing

¢ Decision Variables
— How much gas to buy from traders and LNG regasifiers
— How much gas to sell to Marketers

¢ Market Clearing

— Storage operators’ sales must equal marketers’ purchases from storage
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Marketer/Shipper’s @/ ?\@ Marketer/Shipper
Problem \ :
o \J

+ Maximize demand sector revenues less local delivered costs
from transmitter, storage and LNG Regasification

¢ St

— Sales to Sectors MUST EQUAL purchases from trader, storage, LNG
regasifier

¢ Decision Variables

— How much to buy from trader, storage and LNG

— How much to sell to each sector

23



-

Sectors

e 23 aj keter/’ K1,2,3

\ ’

*Traders are “prodecer specific contract agents”
Marketers and- storage operators can buy from any traders

T -sLiquefier enly buys from domestic producer



Complementarity Aspects

¢ Take major players’ economic behavior consistent
with maximizing net profit subject to economic and
engineering constraints (producers, storage
operators, pipeline operators, liquefiers, regasifiers,
traders)

¢ Collect all the resulting optimality conditions along
with market-clearing ones as well as inverse demand
functions representing the consumers

¢ Resulting set of conditions 1s a nonlinear
complementarity problem (variational inequality)

25



World Gas Model

¢ Countries covered in WGM
— 73 production/75 consumption

¢ Typical decision variables
— operating levels (e.g., production, storage, etc.)
— 1nvestment levels (e.g., pipeline, liquefaction capacity)

¢ Other

— LNG contract database not just spot market
— Multiple years (e.g., 2005, 2010, 2015, 2020, 2030)

— Computational aspects

* ~60,000 vars. Solves in 2 hours on a very fast computer (3 GHz, 4GB RAM, 64-
bit machine), 2005-2020 timeframe (e.g., 2005, 2010, 2015, 2020)

« will want to stochasticize the demand (or other components) at some point

26



WGM — Production Regions
In 2005 70 (+3 1n later years)

Austria, Belarus, Bulga
Republic, Denmark, Fran
Germany, Greece, Hu

Ireland, Italy,
Norway, Pola
Slovakia, Spai
United King

(Equatorial G
Mozambique)

P éﬁ'%

Malay kistan; South

Korea Taiwan, Thail

27

Map source: http://en.wikipedia.org/wiki/Wikipedia:Blank_maps



WGM - Consuming Regions:
75 (non-producing are underlined)

, Baltic Region, Bela
Belgium & Luxembourg
Czech Republig, Den

Hungary, Irela
Netherlands, Nor

i urma
China, In i ~Tnd6ne3|a .Ja n,
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Stochastic Complementarity Problem for Power Market
(based on Hobbs (2001) deterministic complementarity problem)
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¢+ Firms compete in generation market at each node
+  Firms can be at multiple nodes i, multiple types of generation units h

¢+ Firm f's optimization problem:
maximize expected net revenue subject to capacity and consistent constraints

¢+ Main decision variables are: sales (s;,,), slow-ramping generation (X,), rapid-ramping
generation (rg,), M relates to scenario with probability prob(i,m)

ﬁm’ X11m M11m S1oms X12ny F1om

node 2




¢+ Firms compete in generation market at each node
+  Firms can be at multiple nodes i, multiple types of generation units h

¢+ Firm f's optimization problem:
maximize expected net revenue subject to capacity and consistent constraints

¢+ Main decision variables are: sales (s;,,), slow-ramping generation (X,), rapid-ramping
generation (rg,), M relates to scenario with probability prob(i,m)
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¢+ Firms compete in generation market at each node

+  Firms can be at multiple nodes i, multiple types of generation units h

¢+ Firm f's optimization problem:
maximize expected net revenue subject to capacity and consistent constraints

¢+ Main decision variables are: sales (s;,,), slow-ramping generation (X,), rapid-ramping
generation (rg,), M relates to scenario with probability prob(i,m)
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wheeling fee

N SRS N o W T
8g,&5,TF — Em Zz.:h- pT:‘JbLE._ | kcfih — 'l-lr‘;_m] Tf-ih — E-m E.i}i'?'ﬂbli, 'T.l'?,:l I_Rsz_ — Wim ) ?’f;.-i-.-:!-

st xpn— Xpn <0,9f 0 h (pg) (1b)

rrim — RBps S0V e.m (0fim) (1e)

Z 5fim — Zl‘ﬁn — Z?“f-r;m =0.Yf,m (85m) (1d)
i ik ;

Lfik = D, I"'f E h l.].E:I

Tfim, 8fim = 0,Vf, 1, m (1f)
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expected revenue

| [t ]
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st xpn— Xpn <0,9f 0 h (pg) (1b)
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Z 5fim — Zl‘ﬁn — Z?“f-r;m =0.Yf,m (85m) (1d)
i ik ;

Lfik = D, I"'f E h l.].E:I

Tfim, 8fim = 0,Vf, 1, m (1f)
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expected slow-ramping generation costs
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max

capacity constraints
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max Z:‘:‘t- Z;E::Tﬂb"'z ) (a:’:m o b{ (Zﬂ' ng'm) _:lfl:lﬁl) :Fflﬁl '-]-E':I
8g,&5,TF — Em Zz.:h- pT:‘JbLE._ | kcfih — 'l-lr‘;_m] Tf-ih — E-m E.i}i'?'ﬂbli, 'T.l'?,:l I_Rsz_ — i.r_.'-i:l'l't-] ?’f;.-i-.-:!-

st xpn— Xpn <0,9f 0 h (pg) (1b)

rrim — RBps S 0VFe.m (0fim) (1e)

Z 5fim — Zl‘ﬁn — Z?“f-r;m =0|vf,m (85m) (1d)
i ik ;

Lfik = D, I"'f E h l.].E:I

Tfim, 8fim = 0,Vf, 1, m (1f)

consistency constraints

sales= generation
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KKT Conditions for Firm f’s Problem
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¢+ Independent System Operator (ISO) manages the grid

¢ Optimization problem:
maximize expected wheeling fees subject to consistency constraints for line

flows
Main variables are: vy, , if positive then inflow, if negative then outflow at node i

o) 3

Yom

Yim

Yam

e
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_—"_ expected

_ wheeling
max D) prob(i, miwimyin | fees (3a)
st. —T,_—Y PTDFuy; < 0.¥Lm (M) (3b)
~Tis+ ) PTDFaysm < 0.%Lm (Aims) (3¢)
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KKT Conditions for ISO’s Problem

0= —prob(i,m)wim — »  PTDFuMim— + » PTDFilimy. yim free  (4a)

Yi.m

0<T,_+ ZPTDFﬂmm—;"-:m— =0 (4b)

Yi.m

0 E iI_'I-I— - ZPTDﬂ{yim—}‘!m+ E 0 |'1E,:I

Y. m
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*

*

Market-clearing constraints
Balance sales, generation, and flows at each node

sales

— E 5 fim- E Tfin+ E Ffom—+Vim With free dual variable Wiy, = prob(z, m)wim,
f f.h f

()

Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)

Question: Why not just solve all these conditions together, i.e., extensive form of
the stochastic LCP?

Answer: May have many scenarios m and this would make it an especially large
LCP which could be computationally prohibitive. Instead can use Benders
Decomposition
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*

*

0=

2

Market-clearing constraints
Balance sales, generation, and flows at each node

generation

— E 5 fimH E Tfin+ E F o+ Uim With free dual variable Wiy, = prob(z, m)wim,
f . f

()

Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)

Question: Why not just solve all these conditions together, i.e., extensive form of
the stochastic LCP?

Answer: May have many scenarios m and this would make it an especially large
LCP which could be computationally prohibitive. Instead can use Benders
Decomposition
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*

*

0=

2

Market-clearing constraints
Balance sales, generation, and flows at each node

inflows/outflows

— E 5 fim+ E Tfin+ E FfomHUim With free dual variable Wiy, = prob(z, m)wis,
7 F.h f

()

Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)

Question: Why not just solve all these conditions together, i.e., extensive form of
the stochastic LCP?

Answer: May have many scenarios m and this would make it an especially large
LCP which could be computationally prohibitive. Instead can use Benders
Decomposition
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*

*

0=

2

— E 5 fim+ E Tfin+ E Ffom—+Vim With free dual variablefiii,, = prob(1, m)wim,
.

Market-clearing constraints
Balance sales, generation, and flows at each node

wheeling fees

f.h f

=
T

Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)

Question: Why not just solve all these conditions together, i.e., extensive form of
the stochastic LCP?

Answer: May have many scenarios m and this would make it an especially large
LCP which could be computationally prohibitive. Instead can use Benders
Decomposition
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Question: Why not just solve all these conditions together, i.e., extensive
form of the stochastic LCP?

Answer: May have many scenarios m and this would make it an especially
large LCP which could be computationally prohibitive

We use a Benders-like method adapted from Fuller and Chung (2007) to
decompose the problem appropriately

Master problem (MP) will have variables independent of scenarios (e.g., Xgp,)

Suproblem (SP) will have scenario-dependent variables and can be solved
separately by scenario (or not)

Will apply a Dantzig-Wolfe method for VIs (Fuller and Chung) to the “dual
VI” of our problem resulting in a Benders-like method for stochastic (linear)
complementarity problems

49



Algorithms
Benders for Stochastic Complementarity
Problems (results to be shown)

Scenario Reduction Methods

50



Scenario Reduction Methods
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Stochastic Optimization Background

¢+ Many attempts to solve such a stochastic problem, some examples of
approaches

— Decomposing the problem (e.g., L-shaped method)
— Using a sampling approach

— Using a scenario tree for the finite (but usually large) number of
realizations, then approximating it with a reduced tree

Original load scenario tree

Reduced load scenario tree | backward

JE Ed TE 104 13E 1E& uf 1 LF L 3 " T

Romisch, Dupacova, Growe-Kuska,
Heitsch (2003)



*

Stochastic Optimization Background

We came up with a new merit function for stochastic VI’s that helps to
decide when the reduced tree is “good enough”

For details see:
S.A. Gabriel, J. Zhuang, R. Egging, “Solving Stochastic Complementarity
Problems in Energy Market Modeling Using Scenario Reduction,” European

Journal of Operational Research, December 2007, accepted.
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Overall Benders Approach

MASTER PROBLEM

weights : A"

. . -
primal values: z}, primal values: 7,

dual values : B*

SUBPROBLEM
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Selected Benders Method Numerical Results
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Selected Numerical Results

Three discrete probability distributions tried:
— Symmetric
— Right-skewed
— uniform

Varying number of scenarios

— 1000, 2000, 3000, 5000, 10000

No special computations for subproblem (i.e., splitting up into
separate problems), although GAMS may be doing some of this on
1ts own
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0.02

0.018

0.016

0.014

0.012

0.01

probability

0.008

0.006

0.004

0.002 Je¢*

scenarios

Figure 1: Discrete Symmetric. Triangular Dist. (a=01.0=09 w=0.1,m,
B |p| = 100)
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# of

scenarios

|- M # Benders Ext. # Benders
of Time Form of Time/Ext.
Vars (SP+ MP= Total) | Time Benders | Form Time
Benders:Ext. Form | (s) (=) Iters. (%)

1,000 28.000:25,016 234+-012=246 6.97 4 359

2000 56.,000:56,016 §.05+0.19=58.24 36.17 4 23%

3,000 54,000:54,016 17.60+0.19=17.99 | 103.35 4 17%

5,000 140.000:140,016 37.17+0.19=57.36 | 453.97 4 13%

10,000 280.000-280,016 204 0§+0.17=294 25 | 33958 67 4 9%

Table 8: Numerical Results: o = 0.1.v = 0.9, w = 0.1, start=0.9 end=1.5.

Symmetric, Discrete. Triangular Distribution.
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# of Variables

|- M # Benders Ext. # Benders
of Time Form of Time/Ext.
Vars (SP+ MP= Total) | Time Benders | Form Time
Benders:Ext. Form | (s) (=) Iters. (%)

1,000 28.000:25,016 234+-012=246 6.97 4 359

2000 56.,000:56,016 §.05+0.19=58.24 36.17 4 23%

3,000 54,000:54,016 17.60+0.19=17.99 | 103.35 4 17%

5,000 140.000:140,016 37.17+0.19=57.36 | 453.97 4 13%

10,000 280000280, 016 204 0§+0.17=294 25 | 33958 67 4 9%

Table 8: Numerical Results: o = 0.1.v = 0.9, w = 0.1, start=0.9 end=1.5.

Symmetric, Discrete. Triangular Distribution.
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Computational time for subproblem (SP) and master problem (MP) using
Benders-like decomposition

|- M # Benders Ext. # Benders
of Time Form of Time/Ext.
Vars (SP+ MP= Total) | Time Benders | Form Time
Benders:Ext. Form | (s) (=) Iters. (%)
1,000 28,000:25,016 2.34+0.12=2.46 6.97 4 35%
2,000 56,000:56,016 §.05+0.19=58.24 36.17 4 23%
3,000 54,000:54,016 17.50+0.19=17.99 | 103.35 4 17%
5,000 140.000:140,016 57.17+0.19=57.36 | 453.97 4 13%
10,000 250,000:280,016 204.05+0.17=2094.25 | 3395.67 4 9%

Table 8: Numerical Results: o = 0.1.v = 0.9, w = 0.1, start=0.9 end=1.5.
Symmetric, Discrete. Triangular Distribution.
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Computational time for extensive form
(no decomposition)

|- M # Benders Ext. # Benders
of Time Form of Time/Ext.
Vars (SP+ MP= Total) || Time Benders | Form Time
Benders:Ext. Form | (s) (=) Iters. (%)

1,000 28.000:25,016 234+-012=246 6.97 4 359

2000 56.,000:56,016 §.05+0.19=58.24 36.17 4 23%

3,000 54,000:54,016 17.60+-0.19=17.99 )| 103.35 4 17%

5,000 140.000:140,016 37.17+0.19=57.36 || 453.97 4 13%

10,000 280.000-280,016 204 08+0.17=294 25 || 33958 67 4 9%

Table 8: Numerical Results: o = 0.1.v = 0.9, w = 0.1, start=0.9 end=1.5.

Symmetric, Discrete. Triangular Distribution.
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# of Benders lterations

|- M # Benders Ext. # Benders
of Time Form of Time/Ext.
Vars (SP+ MP= Total) | Time Benders | Form Time
Benders:Ext. Form | (s) (=) Iters. (%)
1,000 28,000:25,016 2.34+0.12=2.46 6.97 4 35%
2,000 56,000:56,016 §.05+0.19=58.24 36.17 4 23%
3,000 54,000:54,016 17.50+0.19=17.99 | 103.35 4 17%
5,000 140.000:140,016 57.17+0.19=57.36 | 453.97 4 13%
10,000 250,000:280,016 204 05+0.17=204.25 | 3395.67 4 9%

Table 8: Numerical Results: o = 0.1.v = 0.9, w = 0.1, start=0.9 end=1.5.
Symmetric, Discrete. Triangular Distribution.
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Decomposed Approach Time/Extensive Form Time

|- M # Benders Ext. # Benders
of Time Form of Time/Ext.
Vars (SP+ MP= Total) | Time Benders | Form Time
Benders:Ext. Form | (s) (=) Iters. (%)

1,000 28.000:25,016 234+-012=246 6.97 4 359

2000 56.,000:56,016 §.05+0.19=58.24 36.17 4 23%

3,000 54,000:54,016 17.60+0.19=17.99 | 103.35 4 17%

5,000 140.000:140,016 37.17+0.19=57.36 | 453.97 4 13%

10,000 280.000-280,016 204 0§+0.17=294 25 | 33958 67 4 9%

Table 8: Numerical Results: o = 0.1.v = 0.9, w = 0.1, start=0.9 end=1.5.

Symmetric, Discrete. Triangular Distribution.
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Figure 2: Discrete Right-Skewed. Triangular Dist. (a = 0.1.v = 09, w =
0.1.my = [lliﬂ | M| =100)
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| M + Benders Ext. # Benders
of Time Form of Time/Ext.
Vars (SP+ MP= Total) | Time Benders | Form Time
Benders:Ext. Form | (s) (=) Iters. (%)

1,000 28,000:25.016 3.84+0.22=4.06 7.58 6 54%

2,000 56,000:56.016 11.67+0.42=12.00 40.56 ] 30%%

3.000 §4,000:84.016 40.23+-0.33=40.56 | 118.70 6 34%

5 000 140.000-140,016 106 224+0.26=106.48 | 50453 6 21%

10,000 250.000-280.016 382 98+0.25=383.23 | 4042 25 i 9%

Table 9: Numerical Results: a = 0.1.r = 0.9.w = 0.1, start=0.9 end=1.5.

Right-Skewed. Discrete, Triangular Distribution
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Figure 3: Discrete Uniform Dist. (a=01.vr=01.w=01.m, = [EJ M =
100
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| M + Benders Ext. + Benders
of Time Form | of Time /Ext.
Vars (SP+ MP= Total) | Time Benders | Form Time
Benders:Ext. Form | (s) (s) Iters. (%)

1.000 28.000:25.016 2.280.30=2 58 6.56 4 38%

2.000 56.000:56.016 6.080.16=7.14 37.02 4 19%

3.000 84.000:84.016 25.0210.19=26.11 106.69 4 24%

5000 140.000:140.016 69 58+0.05=06963 | 431.27 4 16%

10.000 250.000-280.016 250.06+-0.19=250.25 | 343997 4 7%

Table 12: Numerical Results: a = 0.1, = 0.1, = 0.1, start=0.9 end=1.5.

Uniform, Triangular Distribution
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Ongoing Work

¢ Apply Benders-like decomposition method to
stochastic complementarity problems for natural
gas using World Gas Model (WGM), WGM has
multiple years, seasons, players, and over 70
countries
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