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Outline of Talk
Complementarity problems
– Overview
– World Gas Model
– Stochastic complementarity problem formulation for 

a small power market model

Sketch of Benders algorithm (mention of 
Scenario Reduction Approach)
Selected numerical results
Ongoing Work
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Complementarity Problems and Stochasticity
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NLP

QP
LP

Complementarity Problems vis-à-vis Optimization and 
Game Theory Problems

Other non-optimization 
based problems

e.g., spatial price 
equilibria, traffic 
equilibria, Nash-
Cournot games, zero-
finding problems

Complementarity 
Problems
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Equilibrium Problems Expressed as 
Mixed Nonlinear Complementarity Problems
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Consider a generic nonlinear program and its resulting KKT conditions
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Nonlinear Programs Expressed as 
Mixed Nonlinear Complementarity Problems
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Thus, we get a mixed NCP as follows:
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Producer Duopoly Expressed as 
Nonlinear Complementarity Problems

1 2 1 2

-Two producers competing with each other
 on how much to produce given as , 1, 2

- Market Inverse demand function 
( ) = ( ),  where , >0

that the producers can manipulate by their production

iq i

p q q q qα β α β

=

+ − +

( )
- Production cost function

, 1,2,  where >0i i i i ic q q iγ γ= =
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Producer Duopoly Expressed as 
Nonlinear Complementarity Problems
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Producer 1's optimization problem:
max ( ) *
. . 0
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Example of an Equilibrium Problem 
Energy Market Equilibria: PIES

(Cottle, Pang, Stone)

• As a result of the energy crisis in the US in the mid 1970’s 
the Project Independence Evaluation System (PIES) energy 
model was developed

• Models a competitive market with two sets of players 
(agents): suppliers and consumers

• Given a perceived demand, suppliers solve a related LP 
• Consumers demand is a function of all energy prices and 

given by an econometrically-derived demand equation
• Several later versions: Intermediate Future Forecasting 

System (1980’s), National Energy Modeling System (1990’s-
present)
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Example of an Equilibrium Problme
Energy Market Equilibria: PIES

1. Supply Side
min     ! total cost of production
. .

     ! demand, dual price:
     !non-demand 

0

Tc x
s t
Ax q
Bx b
x

π≥
≥

≥

quantities demand  
costs prod. ofvector 

 where

=
=

q
c



1212

Example of an Equilibrium Problem 
Energy Market Equilibria: PIES
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PIES is an example of a pure NCP 
Conditions taken component-wise or by vectors it's the same, why?
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Equilibrium Problems Expressed as 
Mixed Nonlinear Complementarity Problems 
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World Gas Model- Overview
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The Natural Gas Supply Chain

INDUSTRIAL

CITY GATE STATION

COMMERCIAL

RESIDENTIAL

DISTRIBUTION SYSTEM

UNDERGROUND STORAGE

TRANSMISSION 
SYSTEM

Cleaner

Compressor Station

GAS PROCESSING PLANT

GAS PRODUCTION

Gas Well Associated Gas and Oil Well

Impurities Gaseous 
Products

Liquid
Products

ELECTRIC POWER

From well-head
to burner-tip
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Maximize production revenues less production costs
s.t.
– bounds on production rates
– bounds on volume of gas produced in time-window of analysis

Decision Variables
– How much to produce in season and year (cubic meters/day)

Market Clearing
– Producers’ sales must equal Trader’s purchases from Producer

Producer’s Problem
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Maximize selling revenues less 
purchase costs from domestic producer
and neighboring traders
s.t.
– material balances, including international pipeline losses

Decision Variables
– How much to sell in season and year (cubic meters/day)
– How much to buy from producers and neighboring transmitters (cubic meters/day)

Market Clearing:
– Sales must equal Purchases of (domestic) Marketers, Storage, LNG Liquefaction 

and (neighboring) Traders

Trader’s  Problem



1818

Interfaces between 
producers and end-user markets
Separate entity
‘Dedicated trading companies for each producer’
Mimics some market aspects better than ‘producer’- ‘marketer’
only
Allows easier incorporation separate low/high calorific markets

Trader Characteristics
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LNG Liquefier Problem

Maximize revenues from selling LNG to 
Regasifiers less purchase, liquefaction and distribution costs
s.t.
– bounds on liquefaction capacity
– material balance including liquefaction losses

Decision Variables
– How much to buy from the Trader
– How much to sell to each LNG Regasifier

Market Clearing
– Sales to a specific Regasifier must equal Purchases by specific 

Regasifier from this Liquefactor
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LNG Regasifier Problem

Maximize revenues from selling regasified LNG 
to marketers and storage less transport and regasifaction costs
s.t.
– Regasification capacity
– Material balance including transport and regasification losses

Decision Variables
– How much to sell
– How much to buy from each liquefactor

Market Clearing
– Sales must equal Purchases from this Regasifier by each Marketer and each 

Storage operator
(Actually LNG Regasifier operators don’t buy and sell gas but Regasification 
services to marketers. Similar to ‘Storage operator’)
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Maximize congestion revenues
s.t.

– capacity bounds on flow

Decision Variables
– How much capacity to sell to traders (in each season and year)

Market Clearing
– Capacity sold to traders must equal capacity purchased by traders

Pipeline Operator’s Problem
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Storage Reservoir Operator’s 
Problem

Maximize net revenues from marketers less injection costs, 
distribution costs, and purchasing costs from trader and
LNG Regasification

s.t.
– volumetric bound on working gas
– maximum extraction rate bound
– maximum injection rate bound
– annual injection-extraction balancing

Decision Variables
– How much gas to buy from traders and LNG regasifiers
– How much gas to sell to Marketers

Market Clearing
– Storage operators’ sales must equal marketers’ purchases from storage
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Marketer/Shipper’s 
Problem

Marketer/Shipper
1

3

2

4

Maximize demand sector revenues less local delivered costs 
from transmitter, storage and LNG Regasification
s.t.
– Sales to Sectors MUST EQUAL purchases from trader, storage, LNG 

regasifier

Decision Variables
– How much to buy from trader, storage and LNG
– How much to sell to each sector
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Overall WGM Market Structure

T11

C1

K1,2,3

S1

M1

C3

K1,2,3

S3

M3

R3

L1

Producer

Trader

Sectors
Marketer

LNG Liquef

Storage LNG Regasif

Country 1 Country 3

Country 2

T31
T31

T32

T12
T13

•Traders are “producer specific contract agents”
•Marketers and storage operators can buy from any traders
•Liquefier only buys from domestic producer
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Complementarity Aspects

Take major players’ economic behavior consistent 
with maximizing net profit subject to economic and 
engineering constraints (producers, storage 
operators, pipeline operators, liquefiers, regasifiers, 
traders)
Collect all the resulting optimality conditions along 
with market-clearing ones as well as inverse demand 
functions representing the consumers
Resulting set of conditions is a nonlinear 
complementarity problem (variational inequality)
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World Gas Model

Countries covered in WGM
– 73 production/75 consumption

Typical decision variables
– operating levels (e.g., production, storage, etc.)
– investment levels (e.g., pipeline, liquefaction capacity) 

Other
– LNG contract database not just spot market
– Multiple years (e.g., 2005, 2010, 2015, 2020, 2030)
– Computational aspects

• ~60,000 vars. Solves  in 2 hours on a very fast computer (3 GHz, 4GB RAM, 64-
bit machine), 2005-2020 timeframe (e.g., 2005, 2010, 2015, 2020) 

• will want to stochasticize the demand (or other components) at some point
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WGM – Production Regions 
In 2005 70 (+3 in later years)

Algeria, Angola, Egypt, 
Libya, Morocco, Nigeria, 
South Africa, Tunisia
(Equatorial Guinea, 
Mozambique) 

Austria, Belarus, Bulgaria, Czech 
Republic, Denmark, France, 
Germany, Greece, Hungary, 
Ireland, Italy,  Netherlands, 
Norway, Poland, Romania, 
Slovakia, Spain, Turkey, Ukraine, 
United Kingdom

Canada-East, Canada-West, 
Mexico, USA-Alaska, USA-East, 
USA-Gulf, USA-MidWest, USA-
Rockies, USA-West

Argentina, Bolivia, Brazil, 
Chile, Ecuador, Peru, Trinidad 
& Tobago, Venezuela

Russia-Sakhalin, 
Russia-Volga-Uralsk, Russia-
West

Azerbaijan, Kazakhstan, 
Turkmenistan, Uzbekistan

Australia, Brunei, Burma, 
China, India, Indonesia, Japan, 
Malaysia, Pakistan, South 
Korea, Taiwan, Thailand

Iran, Kuwait, Oman, 
Qatar, Saudi Arabia, 
United Arab 
Emirates
(Yemen)

Map source: http://en.wikipedia.org/wiki/Wikipedia:Blank_maps
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WGM - Consuming Regions: 
75 (non-producing are underlined)

Algeria, Angola, 
Egypt, Libya, 
Morocco, Nigeria, 
South Africa, Tunisia

Austria, Baltic Region, Belarus, 
Belgium & Luxembourg, Bulgaria, 
Czech Republic, Denmark, Finland, 
France, Germany, Greece, 
Hungary, Ireland, Italy,  
Netherlands, Norway, Poland, 
Portugal, Romania, Slovakia, 
Slovenia, Spain, Sweden, 
Switzerland, Turkey, Ukraine, 
United Kingdom

Canada-East, Canada-West, 
Mexico, USA-Alaska, USA-East, 
USA-Gulf, USA-MidWest, USA-
Rockies, USA-West

Argentina, Bolivia, Brazil, 
Chile, Ecuador, Peru, Trinidad 
& Tobago, Venezuela

Russia-East,
Russia-Volga-Uralsk, Russia-
West

Azerbaijan, Kazakhstan, 
Turkmenistan, Uzbekistan

Australia, Brunei, Burma, 
China, India, Indonesia, Japan, 
Malaysia, Pakistan, South 
Korea, Taiwan, Thailand

Iran, Kuwait, Oman, 
Qatar, Saudi Arabia, 
United Arab 
Emirates, Yemen

Map source: http://en.wikipedia.org/wiki/Wikipedia:Blank_maps
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Stochastic Complementarity Problem for Power Market
(based on Hobbs (2001) deterministic complementarity problem)
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Firms compete in generation market at each node
Firms can be at multiple nodes i, multiple types of generation units h
Firm f’s optimization problem: 
maximize expected net revenue subject to capacity and consistent constraints
Main decision variables are: sales (sfim), slow-ramping generation (xfih), rapid-ramping 
generation (rfim), m relates to scenario with probability prob(i,m)

node 1node 1 node 2node 2

node 3node 3

firm 1firm 1 firm 1firm 1

s11m, x11h, r11m s12m, x12h, r12m
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Firms compete in generation market at each node
Firms can be at multiple nodes i, multiple types of generation units h
Firm f’s optimization problem: 
maximize expected net revenue subject to capacity and consistent constraints
Main decision variables are: sales (sfim), slow-ramping generation (xfih), rapid-ramping 
generation (rfim), m relates to scenario with probability prob(i,m)

node 1node 1 node 2node 2

node 3node 3

firm 1firm 1

firm 2firm 2

firm 1firm 1

firm 2firm 2

s11m, x11h, r11m s12m, x12h, r12m

s23m, x23h, r23m

s21m, x21h, r21m
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Firms compete in generation market at each node
Firms can be at multiple nodes i, multiple types of generation units h
Firm f’s optimization problem: 
maximize expected net revenue subject to capacity and consistent constraints
Main decision variables are: sales (sfim), slow-ramping generation (xfih), rapid-ramping 
generation (rfim), m relates to scenario with probability prob(i,m)

node 1node 1 node 2node 2

node 3node 3

firm 1firm 1

firm 2firm 2

firm 1firm 1 firm 3firm 3

firm 2firm 2 firm 3firm 3

s11m, x11h, r11m s12m, x12h, r12m

s23m, x23h, r23m

s32m, x32h, r32m

s33m, x33h, r33m

s21m, x21h, r21m
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inverse demand

Inverse demand 
intercept is 
random
pmf for intercept, 
slope certain

price

quantity

ai1

ai3

ai2

ar4



3434

wheeling fee
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expected revenue
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expected slow-ramping generation costs
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expected rapid-ramping generation costs
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capacity constraints
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consistency constraints

sales= generation
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KKT Conditions for Firm f’s Problem
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node 1node 1 node 2node 2

node 3node 3

firm 1firm 1 firm 2firm 2 firm 1firm 1 firm 3firm 3

firm 2firm 2 firm 3firm 3

Independent System Operator (ISO) manages the grid
Optimization problem:
maximize expected wheeling fees subject to consistency constraints for line 
flows
Main variables are: yim , if positive then inflow, if negative then outflow at node i

ISOISO

y1m y2m

y3m
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expected 
wheeling 
fees
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line limit 
constraints
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KKT Conditions for ISO’s Problem
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Market-clearing constraints
Balance sales, generation, and flows at each node

Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)
Question: Why not just solve all these conditions together, i.e., extensive form of 
the stochastic LCP?
Answer: May have many scenarios m and this would make it an especially large 
LCP which could be computationally prohibitive.  Instead can use Benders 
Decomposition

sales
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Market-clearing constraints
Balance sales, generation, and flows at each node

Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)
Question: Why not just solve all these conditions together, i.e., extensive form of 
the stochastic LCP?
Answer: May have many scenarios m and this would make it an especially large 
LCP which could be computationally prohibitive.  Instead can use Benders 
Decomposition

generation
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Market-clearing constraints
Balance sales, generation, and flows at each node

Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)
Question: Why not just solve all these conditions together, i.e., extensive form of 
the stochastic LCP?
Answer: May have many scenarios m and this would make it an especially large 
LCP which could be computationally prohibitive.  Instead can use Benders 
Decomposition

inflows/outflows
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Market-clearing constraints
Balance sales, generation, and flows at each node

Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)
Question: Why not just solve all these conditions together, i.e., extensive form of 
the stochastic LCP?
Answer: May have many scenarios m and this would make it an especially large 
LCP which could be computationally prohibitive.  Instead can use Benders 
Decomposition

wheeling fees
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Question: Why not just solve all these conditions together, i.e., extensive 
form of the stochastic LCP?

Answer: May have many scenarios m and this would make it an especially 
large LCP which could be computationally prohibitive
We use a Benders-like method adapted from Fuller and Chung (2007) to 
decompose the problem appropriately
Master problem (MP) will have variables independent of scenarios (e.g., xfih)
Suproblem (SP) will have scenario-dependent variables and can be solved 
separately by scenario (or not)
Will apply a Dantzig-Wolfe method for VIs (Fuller and Chung) to the “dual 
VI” of our problem resulting in a Benders-like method for stochastic (linear) 
complementarity problems
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Algorithms
Benders for Stochastic Complementarity 

Problems (results to be shown)

Scenario Reduction Methods
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Scenario Reduction Methods
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Stochastic Optimization Background
Many attempts to solve such a stochastic problem, some examples of 
approaches
– Decomposing the problem (e.g., L-shaped method)
– Using a sampling approach
– Using a scenario tree for the finite (but usually large) number of 

realizations, then approximating it with a reduced tree

Römisch, Dupačová, Gröwe-Kuska, 
Heitsch (2003)
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Stochastic Optimization Background
We came up with a new merit function for stochastic VI’s that helps to 
decide when the reduced tree is “good enough”
For details see:
S.A. Gabriel, J. Zhuang, R. Egging, “Solving Stochastic Complementarity 
Problems in Energy Market Modeling Using Scenario Reduction,” European 

Journal of Operational Research, December 2007, accepted.
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PROBLEM MASTER

Overall Benders Approach

SUBPROBLEM

k

k
Mz

β

λ

: valuesdual

: valuesprimal
 :weights

2

k

k
Sz2: valuesprimal
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Selected Benders Method Numerical Results
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Selected Numerical Results

Three discrete probability distributions tried:
– Symmetric
– Right-skewed
– uniform

Varying number of scenarios
– 1000, 2000, 3000, 5000, 10000

No special computations for subproblem (i.e., splitting up into 
separate problems), although GAMS may be doing some of this on 
its own
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5858

# of 
scenarios
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# of Variables
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Computational time for subproblem (SP) and master problem (MP) using 
Benders-like decomposition
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Computational time for extensive form
(no decomposition)
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# of Benders Iterations
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Decomposed Approach Time/Extensive Form Time
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6666
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Ongoing Work

Apply Benders-like decomposition method to 
stochastic complementarity problems for natural 
gas using World Gas Model (WGM), WGM has 
multiple years, seasons, players, and over 70 
countries
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