Stochastic Market Equilibrium Models Using Complementarity Theory *

Steven A. Gabriel^{1,2}

Co-authors: J. David Fuller³, Ruud Egging¹, Yohan Shim¹

¹ Dept. of Civil & Env. Engineering, University of Maryland ² Gilbert White Fellow, RFF, 2007-2008

³ Dept. of Management Sciences University of Waterloo,, Waterloo, Ontario, Canada

Atlantic Energy Group presented at FERC Washington, DC September 17, 2008

*National Science Foundation Funding, Division of Mathematical Sciences, Awards 0106880, 0408943

Outline of Talk

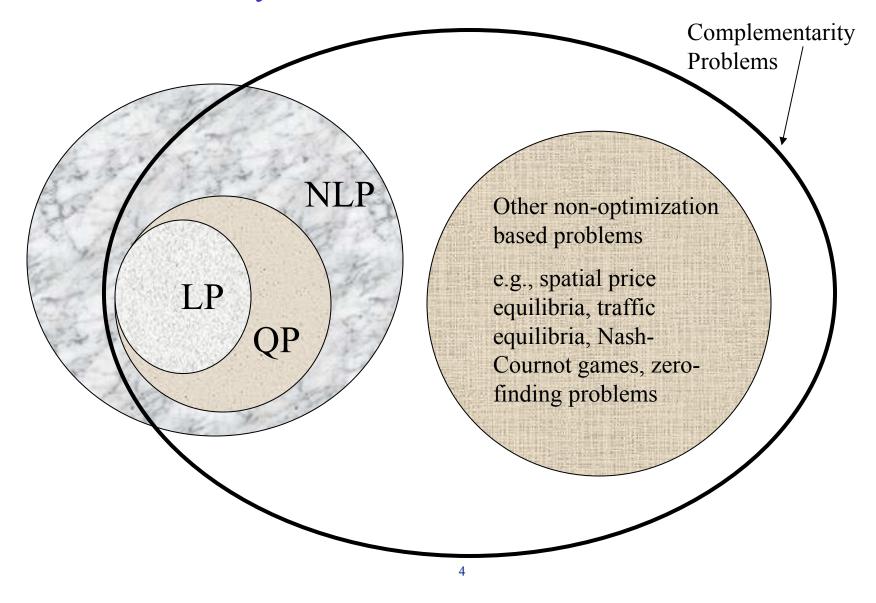
- Complementarity problems
 - Overview
 - World Gas Model
 - Stochastic complementarity problem formulation for a small power market model

2

- Sketch of Benders algorithm (mention of Scenario Reduction Approach)
- Selected numerical results
- Ongoing Work
- References

Complementarity Problems and Stochasticity

Complementarity Problems vis-à-vis Optimization and Game Theory Problems



Equilibrium Problems Expressed as Mixed Nonlinear Complementarity Problems

(Mixed) Nonlinear Complementarity Problem MNCP

Having a function $F : \mathbb{R}^n \to \mathbb{R}^n$, find an $x \in \mathbb{R}^{n_1}$, $y \in \mathbb{R}^{n_2}$ such that $F_i(x, y) \ge 0, x_i \ge 0, F_i(x, y) * x_i = 0$ for $i = 1, ..., n_1$ $F_i(x, y) = 0, y_i$ free, for $i = n_1 + 1, ..., n$ Example

$$F(x_1, x_2, y_1) = \begin{pmatrix} F_1(x_1, x_2, y_1) \\ F_2(x_1, x_2, y_1) \\ F_3(x_1, x_2, y_1) \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 - y_1 \\ x_1 + x_2 + y_1 - 2 \end{pmatrix}$$
 so we want to find x_1, x_2, y_1 s.t.
$$x_1 + x_2 \ge 0 \qquad x_1 \ge 0 \qquad (x_1 + x_2) * x_1 = 0$$

$$x_1 - y_1 \ge 0 \qquad x_2 \ge 0 \qquad (x_1 - y_1) * x_2 = 0$$

$$x_1 + x_2 + y_1 - 2 = 0 \qquad y \text{ free}$$

One solution: $(x_1, x_2, y_1) = (0, 2, 0)$, why? Any others?

Nonlinear Programs Expressed as Mixed Nonlinear Complementarity Problems

Consider a generic nonlinear program and its resulting KKT conditions min f(x)

s.t.
$$g_i(x) \le 0, i = 1, ..., m$$
 (u_i)
 $h_j(x) = 0, j = 1, ..., p$ (v_j)

KKT conditions, find $\overline{x} \in R^n$, $\overline{u} \in R^m$, $\overline{v} \in R^p s.t$.

$$\begin{cases} (i)\nabla f(\overline{x}) + \sum_{i=1}^{m} \overline{u}_{i} \nabla g_{i}(\overline{x}) + \sum_{j=1}^{p} \overline{v}_{i} \nabla h_{j}(\overline{x}) = 0\\ (ii)g_{i}(\overline{x}) \leq 0, \overline{u}_{i} \geq 0, g_{i}(\overline{x})\overline{u}_{i} = 0, \text{ for all } i = 1, \dots, m\\ (iii)h_{j}(\overline{x}) = 0, \overline{v}_{j} \text{ free, for all } j = 1, \dots, p \end{cases} \end{cases}$$

Nonlinear Programs Expressed as Mixed Nonlinear Complementarity Problems

Thus, we get a mixed NCP as follows:

$$F\begin{pmatrix}x\\u\\v\end{pmatrix} = \begin{pmatrix}\nabla f(x) + \sum_{i=1}^{m} u_i \nabla g_i(x) + \sum_{j=1}^{p} v_j \nabla h_j(x)\\ -g_i(x), i = 1, \dots, m\\ h_j(x), j = 1, \dots, p\end{pmatrix}$$

$$\nabla f(x) + \sum_{i=1}^{m} u_i \nabla g_i(x) + \sum_{j=1}^{p} v_j \nabla h_j(x) = 0 \qquad x \text{ free}$$

$$-g_i(x) \ge 0, i = 1, \dots, m \qquad u_i \ge 0, (-g_i(x)) * u_i = 0$$

$$h_j(x) = 0, j = 1, \dots, p \qquad v_j \text{ free}$$

Producer Duopoly Expressed as Nonlinear Complementarity Problems

-Two producers competing with each other on how much to produce given as q_i , i = 1, 2

- Market Inverse demand function $p(q_1 + q_2) = \alpha - \beta(q_1 + q_2)$, where $\alpha, \beta > 0$

that the producers can manipulate by their production

- Production cost function

$$c_i(q_i) = \gamma_i q_i, i = 1, 2, \text{ where } \gamma_i > 0$$

Producer Duopoly Expressed as Nonlinear Complementarity Problems

Producer 1's optimization problem:

$$\max \left(\alpha - \beta(q_1 + q_2)\right)^* q_1 - \gamma_1 q_1$$

s.t. $q_1 \ge 0$

KKT conditions:

Find
$$q_1$$
 s.t. $2\beta q_1 + \beta q_2 - \alpha + \gamma_1 \ge 0$ $q_1 \ge 0$ $(2\beta q_1 + \beta q_2 - \alpha + \gamma_1)q_1 = 0$

For Producer 2, similar idea, that is:

Find q_2 s.t. $2\beta q_2 + \beta q_1 - \alpha + \gamma_2 \ge 0$ $q_1 \ge 0$ $(2\beta q_2 + \beta q_1 - \alpha + \gamma_2)q_1 = 0$

Need to solve both at same time (why?) to get the resulting pure NCP

$$F\begin{pmatrix}q_1\\q_2\end{pmatrix} = \begin{pmatrix}2\beta q_1 + \beta q_2 - \alpha + \gamma_1\\2\beta q_2 + \beta q_1 - \alpha + \gamma_2\end{pmatrix}$$

Can generalize to N players, will get a Nash-Cournot equilibrium

Example of an Equilibrium Problem Energy Market Equilibria: PIES (Cottle, Pang, Stone)

- As a result of the energy crisis in the US in the mid 1970's the Project Independence Evaluation System (PIES) energy model was developed
- Models a competitive market with two sets of players (agents): suppliers and consumers
- Given a perceived demand, suppliers solve a related LP
- Consumers demand is a function of all energy prices and given by an econometrically-derived demand equation
- Several later versions: Intermediate Future Forecasting System (1980's), National Energy Modeling System (1990'spresent)

Example of an Equilibrium Problme Energy Market Equilibria: PIES

1. Supply Side

min $c^T x$! total cost of production

s.t.

- $Ax \ge q$! demand, dual price: π
- $Bx \ge b$!non-demand

 $x \ge 0$

where

- c =vector of prod. costs
- q = demand quantities

Example of an Equilibrium Problem Energy Market Equilibria: PIES

2. Demand Side

$$\ln\left(\frac{q_i}{q_i^0}\right) = \sum_{j=1}^n e_{ij} \ln\left(\frac{p_i}{p_i^0}\right) \text{ or }$$
$$q_i(p) = q_i^0 \prod_{j=1}^n \left(\frac{p_i}{p_i^0}\right)^{e_{ij}}$$
(3) Equilibrating condition
$$\pi^* = p^*$$

where

 q_i^0 = reference demand for product i p_i^0 = reference price for product i e_{ij} = elasticities

Equilibrium Problems Expressed as Mixed Nonlinear Complementarity Problems

PIES is an example of a pure NCP

Conditions taken component-wise or by vectors it's the same, why?

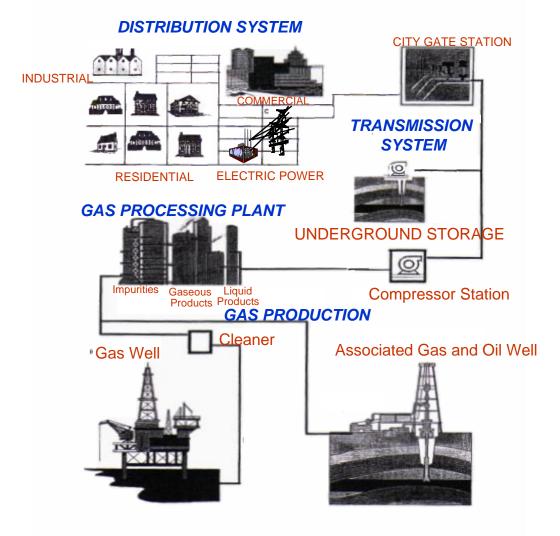
$$c - A^{T} \pi - B^{T} \gamma \ge 0 \qquad x \ge 0 \qquad \left(c - A^{T} \pi - B^{T} \gamma\right)^{T} x = 0$$
$$Ax - q(\pi) \ge 0 \qquad \pi \ge 0 \qquad \left(Ax - q(\pi)\right)^{T} \pi = 0$$
$$Bx - b \ge 0 \qquad \gamma \ge 0 \qquad \left(Bx - b\right)^{T} \gamma = 0$$

Thus, the function F is defined as follows:

$$F\begin{pmatrix} x\\ \pi\\ \gamma \end{pmatrix} = \begin{pmatrix} c - A^T \pi - B^T \gamma\\ Ax - q(\pi)\\ Bx - b \end{pmatrix}$$

World Gas Model- Overview

The Natural Gas Supply Chain



From well-head to burner-tip

Producer's Problem

- Maximize production revenues less production costs s.t.
 - bounds on production rates
 - bounds on volume of gas produced in time-window of analysis
- Decision Variables
 - How much to produce in season and year (cubic meters/day)
- Market Clearing
 - Producers' sales must equal Trader's purchases from Producer

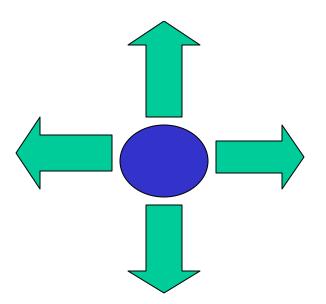
Trader's Problem

 Maximize selling revenues less purchase costs from domestic producer and neighboring traders

- s.t.
 - material balances, including international pipeline losses
- Decision Variables
 - How much to sell in season and year (cubic meters/day)
 - How much to buy from producers and neighboring transmitters (cubic meters/day)
- Market Clearing:
 - Sales must equal Purchases of (domestic) Marketers, Storage, LNG Liquefaction and (neighboring) Traders

Trader Characteristics

- Interfaces between producers and end-user markets
- Separate entity



- 'Dedicated trading companies for each producer'
- Mimics some market aspects better than 'producer'- 'marketer' only
- Allows easier incorporation separate low/high calorific markets

LNG Liquefier Problem

- Maximize revenues from selling LNG to Regasifiers less purchase, liquefaction and distribution costs s.t.
 - bounds on liquefaction capacity
 - material balance including liquefaction losses
- Decision Variables
 - How much to buy from the Trader
 - How much to sell to each LNG Regasifier
- Market Clearing
 - Sales to a specific Regasifier must equal Purchases by specific Regasifier from this Liquefactor

LNG Regasifier Problem

- Maximize revenues from selling regasified LNG to marketers and storage less transport and regasifaction costs
- s.t.
 - Regasification capacity
 - Material balance including transport and regasification losses
- Decision Variables
 - How much to sell
 - How much to buy from each liquefactor
- Market Clearing
 - Sales must equal Purchases from this Regasifier by each Marketer and each Storage operator
- (Actually LNG Regasifier operators don't buy and sell gas but Regasification services to marketers. Similar to 'Storage operator')

Pipeline Operator's Problem

Maximize congestion revenues

s.t.

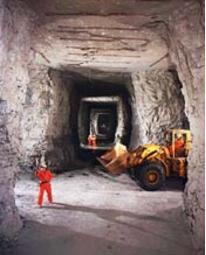
- capacity bounds on flow
- Decision Variables
 - How much capacity to sell to traders (in each season and year)
- Market Clearing
 - Capacity sold to traders must equal capacity purchased by traders

Storage Reservoir Operator's Problem

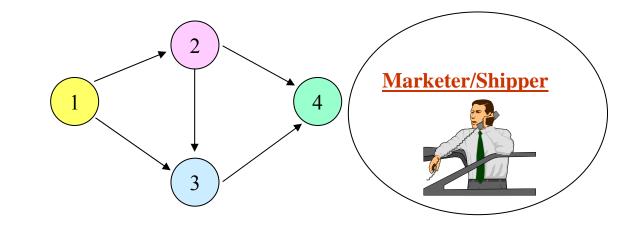
 Maximize net revenues from marketers less injection costs, distribution costs, and purchasing costs from trader and LNG Regasification

s.t.

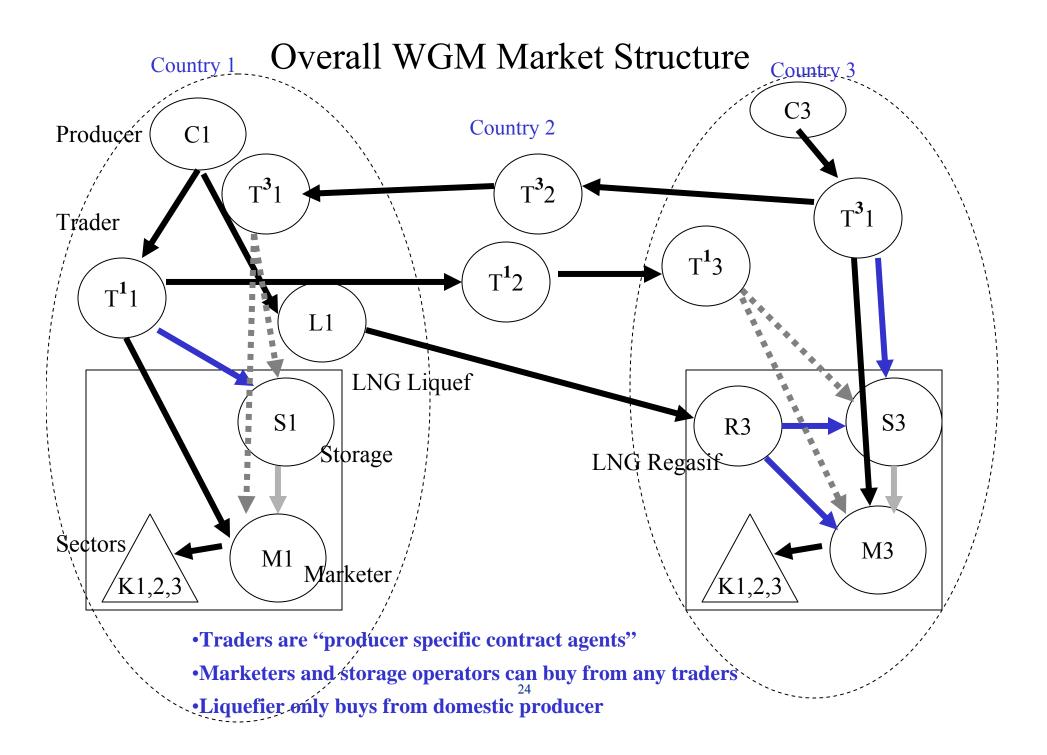
- volumetric bound on working gas
- maximum extraction rate bound
- maximum injection rate bound
- annual injection-extraction balancing
- Decision Variables
 - How much gas to buy from traders and LNG regasifiers
 - How much gas to sell to Marketers
- Market Clearing
 - Storage operators' sales must equal marketers' purchases from storage



Marketer/Shipper's Problem



- Maximize demand sector revenues less local delivered costs from transmitter, storage and LNG Regasification
- s.t.
 - Sales to Sectors MUST EQUAL purchases from trader, storage, LNG regasifier
- Decision Variables
 - How much to buy from trader, storage and LNG
 - How much to sell to each sector



Complementarity Aspects

- Take major players' economic behavior consistent with maximizing net profit subject to economic and engineering constraints (producers, storage operators, pipeline operators, liquefiers, regasifiers, traders)
- Collect all the resulting optimality conditions along with market-clearing ones as well as inverse demand functions representing the consumers
- Resulting set of conditions is a nonlinear complementarity problem (variational inequality)

World Gas Model

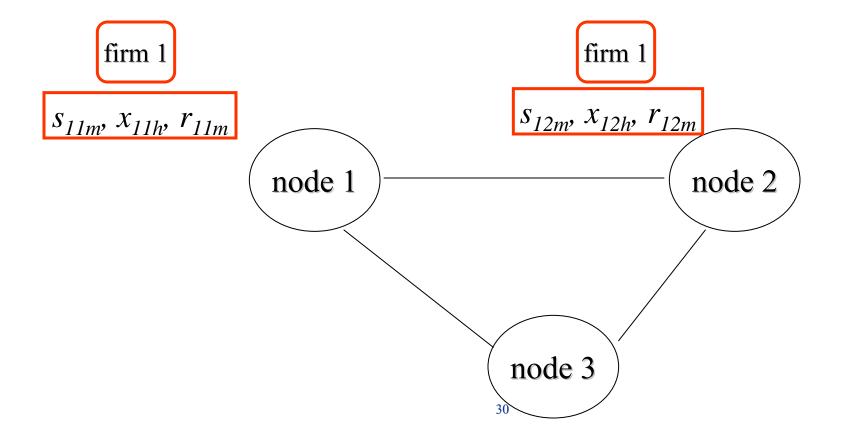
- Countries covered in WGM
 - 73 production/75 consumption
- Typical decision variables
 - operating levels (e.g., production, storage, etc.)
 - investment levels (e.g., pipeline, liquefaction capacity)
- Other
 - LNG contract database not just spot market
 - Multiple years (e.g., 2005, 2010, 2015, 2020, 2030)
 - Computational aspects
 - ~60,000 vars. Solves in 2 hours on a very fast computer (3 GHz, 4GB RAM, 64bit machine), 2005-2020 timeframe (e.g., 2005, 2010, 2015, 2020)
 - will want to stochasticize the demand (or other components) at some point

WGM – Production Regions In 2005 70 (+3 in later years)

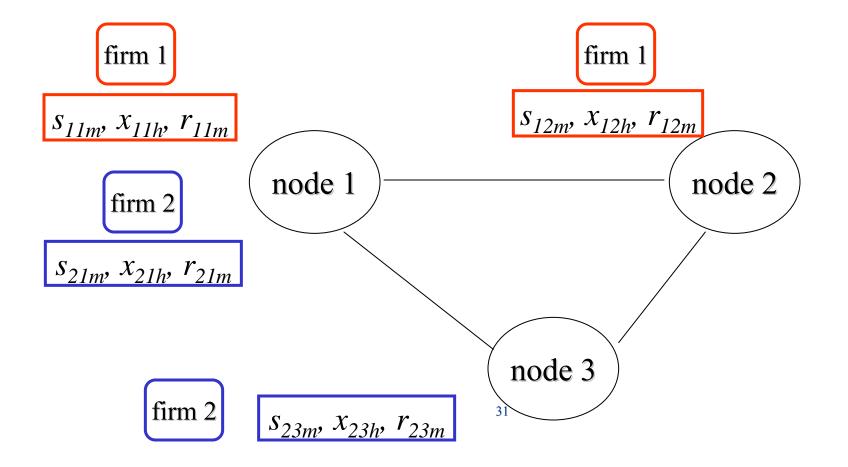
WGM - Consuming Regions: 75 (<u>non-producing are underlined</u>)

Stochastic Complementarity Problem for Power Market (based on Hobbs (2001) deterministic complementarity problem)

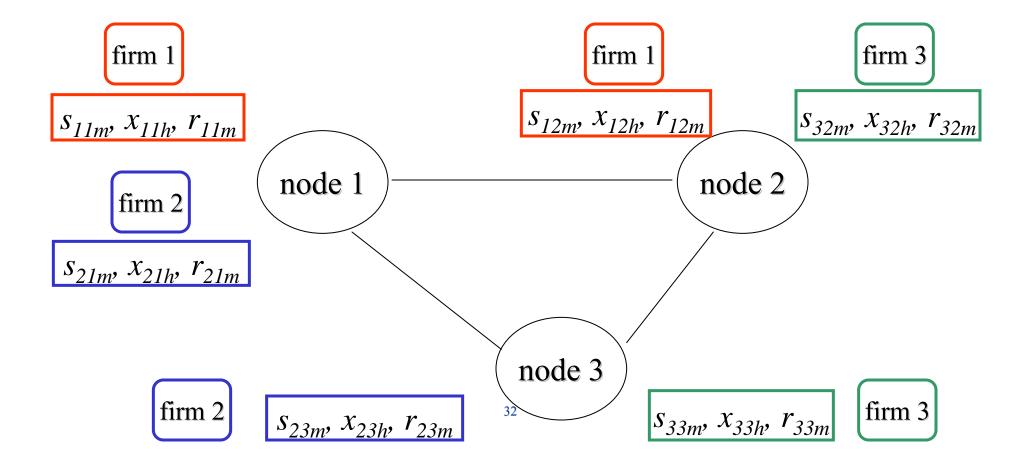
- Firms compete in generation market at each node
- Firms can be at multiple nodes *i*, multiple types of generation units *h*
- Firm *f*'s optimization problem:
 maximize expected net revenue subject to capacity and consistent constraints
- Main decision variables are: sales (s_{fim}) , slow-ramping generation (x_{fih}) , rapid-ramping generation (r_{fim}) , *m* relates to scenario with probability prob(i,m)



- Firms compete in generation market at each node
- Firms can be at multiple nodes *i*, multiple types of generation units *h*
- Firm *f*'s optimization problem:
 maximize expected net revenue subject to capacity and consistent constraints
- Main decision variables are: sales (s_{fim}) , slow-ramping generation (x_{fih}) , rapid-ramping generation (r_{fim}) , *m* relates to scenario with probability prob(i,m)



- Firms compete in generation market at each node
- Firms can be at multiple nodes *i*, multiple types of generation units *h*
- Firm f's optimization problem:
 maximize expected net revenue subject to capacity and consistent constraints
- Main decision variables are: sales (s_{fim}) , slow-ramping generation (x_{fih}) , rapid-ramping generation (r_{fim}) , *m* relates to scenario with probability prob(i,m)



$$\sum_{s_{f},x_{f},r_{f}} \left[\sum_{\substack{\sum_{m}\sum_{i} prob(i,m) \\ -\sum_{m}\sum_{i,h} prob(i,m) \\ (C_{fih} - w_{im}) x_{fih} - \sum_{m}\sum_{i} prob(i,m) \\ (RC_{fi} - w_{im}) r_{fim} \\ s.t. x_{fih} - X_{fih} \le 0, \forall f, i, h \quad (\rho_{fih}) \\ (1b) \\ r_{fim} - R_{fi} \le 0, \forall f, i, m \quad (\sigma_{fim}) \\ (1c) \\ \sum_{i} s_{fim} - \sum_{i,h} x_{fih} - \sum_{i} r_{fim} = 0, \forall f, m \quad (\theta_{fm}) \\ (1d) \\ x_{fih} \ge 0, \forall f, i, h \\ (1e) \\ r_{fim}, s_{fim} \ge 0, \forall f, i, m \\ (1f) \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{r4} \\$$

33

$$\underset{s_{f}, x_{f}, r_{f}}{\max} \begin{bmatrix} \sum_{m} \sum_{i} prob(i, m) \left(a_{im} - b_{i} \left(\sum_{g} s_{gim}\right) - w_{im}\right) s_{fim} \\ -\sum_{m} \sum_{i,h} prob(i, m) \left(C_{fih} - w_{im}\right) x_{fih} - \sum_{m} \sum_{i} prob(i, m) \left(RC_{fi} - w_{im}\right) r_{fim} \end{bmatrix} (1a) \\ s.t. x_{fih} - X_{fih} \leq 0, \forall f, i, h \qquad (\rho_{fih}) (1b) \\ r_{fim} - R_{fi} \leq 0 \forall f, i, m \qquad (\sigma_{fim}) (1c) \\ \sum_{i} s_{fim} - \sum_{i,h} x_{fih} - \sum_{i} r_{fim} = 0, \forall f, m \qquad (\theta_{fm}) (1d) \\ x_{fih} \geq 0, \forall f, i, h \qquad (1e) \\ r_{fim}, s_{fim} \geq 0, \forall f, i, m \qquad (1f) \end{bmatrix}$$

expected revenue

$$\max_{s_{f}, x_{f}, r_{f}} \left[\begin{array}{c} \sum_{m} \sum_{i} prob(i, m) \left(a_{im} - b_{i} \left(\sum_{g} s_{gim}\right) - w_{im}\right) s_{fim} \\ -\sum_{m} \sum_{i,h} prob(i, m) \left(C_{fih} - w_{im}\right) x_{fih} - \sum_{m} \sum_{i} prob(i, m) \left(RC_{fi} - w_{im}\right) r_{fim} \end{array} \right] (1a) \\ s.t. \ x_{fih} - X_{fih} \leq 0, \forall f, i, h \qquad (\rho_{fih}) (1b) \\ r_{fim} - R_{fi} \leq 0 \ \forall f, i, m \qquad (\sigma_{fim}) (1c) \\ \sum_{i} s_{fim} - \sum_{i,h} x_{fih} - \sum_{i} r_{fim} = 0, \forall f, m \qquad (\theta_{fm}) (1d) \\ x_{fih} \geq 0, \forall f, i, h \qquad (1e) \\ r_{fim}, s_{fim} \geq 0, \forall f, i, m \qquad (1f) \end{array} \right)$$

$$\max_{s_{f}, x_{f}, r_{f}} \left[\begin{array}{c} \sum_{m} \sum_{i} prob(i,m) \left(a_{im} - b_{i} \left(\sum_{g} s_{gim}\right) - w_{im}\right) s_{fim} \\ -\sum_{m} \sum_{i} prob(i,m) \left(RC_{fi} - w_{im}\right) r_{fim} \end{array} \right] (1a)$$

$$s.t. \ x_{fih} - X_{fih} \leq 0, \forall f, i, h \qquad \left(\rho_{fih}\right) (1b)$$

$$r_{fim} - R_{fi} \leq 0 \ \forall f, i, m \qquad \left(\sigma_{fim}\right) (1c)$$

$$\sum_{i} s_{fim} - \sum_{i,h} x_{fih} - \sum_{i} r_{fim} = 0, \forall f, m \qquad \left(\theta_{fm}\right) (1d)$$

$$x_{fih} \geq 0, \forall f, i, h \qquad \left(1c\right)$$

$$r_{fim}, s_{fim} \ge 0, \forall f, i, m \text{ (lf)}$$

$$\max_{s_{f}, x_{f}, r_{f}} \left[\begin{array}{c} \sum_{m} \sum_{i} prob(i,m) \left(a_{im} - b_{i} \left(\sum_{g} s_{gim} \right) - w_{im} \right) s_{fim} \\ - \sum_{m} \sum_{i,h} prob(i,m) \left(C_{fih} - w_{im} \right) x_{fih} - \left[\sum_{m} \sum_{i} prob(i,m) \left(RC_{fi} - w_{im} \right) r_{fim} \right] \right] (1a) \\ s.t. \ x_{fih} - X_{fih} \leq 0, \forall f, i, h \quad \left(\rho_{fih} \right) (1b) \\ r_{fim} - R_{fi} \leq 0 \ \forall f, i, m \quad \left(\sigma_{fim} \right) (1c) \\ \sum_{i} s_{fim} - \sum_{i,h} x_{fih} - \sum_{i} r_{fim} = 0, \forall f, m \quad \left(\theta_{fm} \right) (1d) \\ x_{fih} \geq 0, \forall f, i, h \quad (1e) \\ r_{fim}, s_{fim} \geq 0, \forall f, i, m \quad (1f) \end{array} \right)$$

$$\max_{s_{f}, x_{f}, r_{f}} \begin{bmatrix} \sum_{m} \sum_{i} prob(i, m) \left(a_{im} - b_{i} \left(\sum_{g} s_{gim}\right) - w_{im}\right) s_{fim} \\ -\sum_{m} \sum_{i, h} prob(i, m) \left(C_{fih} - w_{im}\right) x_{fih} - \sum_{m} \sum_{i} prob(i, m) \left(RC_{fi} - w_{im}\right) r_{fim} \end{bmatrix} (1a) \\ s.t. \begin{array}{c} x_{fih} - X_{fih} \leq 0, \forall f, i, h \\ r_{fim} - R_{fi} \leq 0 \forall f, i, m \end{array} \begin{array}{c} \left(\rho_{fih}\right) (1b) \\ (\sigma_{fim}) (1c) \end{array} \\ capacity constraints \\ \sum_{i} s_{fim} - \sum_{i, h} x_{fih} - \sum_{i} r_{fim} = 0, \forall f, m \left(\theta_{fm}\right) (1d) \\ x_{fih} \geq 0, \forall f, i, h \left(1e\right) \\ r_{fim}, s_{fim} \geq 0, \forall f, i, m \left(1f\right) \end{array}$$

$$\max_{s_{f}, x_{f}, r_{f}} \left[\begin{array}{c} \sum_{m} \sum_{i} prob(i, m) \left(a_{im} - b_{i} \left(\sum_{g} s_{gim} \right) - w_{im} \right) s_{fim} \\ - \sum_{m} \sum_{i, h} prob(i, m) \left(C_{fih} - w_{im} \right) x_{fih} - \sum_{m} \sum_{i} prob(i, m) \left(RC_{fi} - w_{im} \right) r_{fim} \end{array} \right] (1a)$$

$$s.t. \ x_{fih} - X_{fih} \leq 0, \forall f, i, h \qquad \left(\rho_{fih} \right) (1b) \\ r_{fim} - R_{fi} \leq 0 \ \forall f, i, m \qquad \left(\sigma_{fim} \right) (1c) \\ \sum_{i} s_{fim} - \sum_{i, h} x_{fih} - \sum_{i} r_{fim} = 0 \\ \forall f, m \ \left(\theta_{fm} \right) (1d) \\ x_{fih} \geq 0, \forall f, i, h \ (1e) \\ r_{fim}, s_{fim} \geq 0, \forall f, i, m \ (1f) \end{array}$$

KKT Conditions for Firm f's Problem

$$0 \le prob(i,m) \left[-a_{im} + b_i \left(s_{fim} + \sum_g s_{gim} \right) + w_{im} \right] + \theta_{fm} \bot s_{fim} \ge 0, \forall f, i, m$$

$$(2a)$$

$$0 \le C_{fih} - \sum_{m} prob(i,m) w_{im} - \sum_{m} \theta_{fm} + \rho_{fih} \bot x_{fih} \ge 0$$
(2b)

$$\forall f, i, h$$

$$0 \le prob(i,m)RC_{fi} + \sigma_{fim} - prob(i,m)w_{im} - \theta_{fm} \bot r_{fim} \ge 0$$

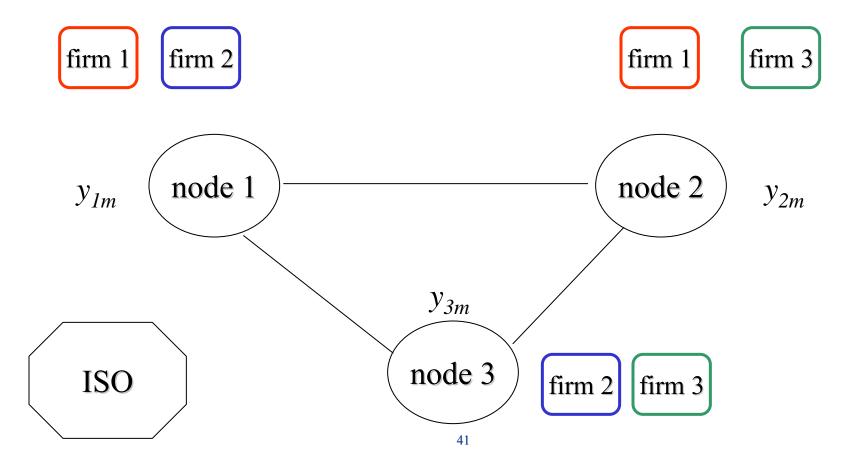
$$\forall f, i, m$$
(2c)

$$\begin{split} 0 &\leq X_{fih} - x_{fih} \bot \rho_{fih} \geq 0 & (2\mathsf{d}) \\ & \forall f, i, h \end{split}$$

$$\begin{split} 0 &\leq R_{fi} - r_{fim} \bot \sigma_{fim} \geq 0 & (2\mathbf{e}) \\ & \forall f, i, m \end{split}$$

$$0 = \sum_{i} s_{fim} - \sum_{i,h} x_{fih} - \sum_{i} r_{fim}, \ \theta_{fm} \text{ free}$$
(2f)
$$\forall f, m$$

- Independent System Operator (ISO) manages the grid
- Optimization problem: maximize expected wheeling fees subject to consistency constraints for line flows
- Main variables are: y_{im} , if positive then inflow, if negative then outflow at node *i*



$$\max_{y} \sum_{m} \sum_{i} prob(i,m) w_{im} y_{im} \qquad \begin{array}{l} \text{expected} \\ \text{wheeling} \\ \text{fees} \\ \text{fees} \\ \text{(3a)} \\ s.t. - T_{l-} - \sum_{i} PTDF_{il} y_{im} \\ -T_{l+} + \sum_{i} PTDF_{il} y_{im} \\ \end{array} \le 0, \forall l, m \ (\lambda_{lm-}) \\ \text{(3b)} \\ \begin{array}{l} \text{(3c)} \end{array}$$

$$\max_{y} \sum_{m} \sum_{i} prob(i, m) w_{im} y_{im}$$
(3a)

$$s.t. - T_{l-} - \sum_{i} PTDF_{il}y_{im} \leq 0, \forall l, m \ (\lambda_{lm-})$$
(3b)

$$-T_{l+} + \sum_{i} PTDF_{il}y_{im} \leq 0, \forall l, m \ (\lambda_{lm+})$$
(3c)

line limit constraints

KKT Conditions for ISO's Problem

$$\begin{split} 0 &= -prob(i,m)w_{im} - \sum_{l} PTDF_{il}\lambda_{lm-} + \sum_{l} PTDF_{il}\lambda_{lm+}, \quad y_{im} \text{ free } (4a) \\ &\qquad \forall i,m \\ 0 &\leq T_{l-} + \sum_{i} PTDF_{il}y_{im} \bot \lambda_{lm-} \geq 0 \quad (4b) \end{split}$$

$$\forall l, m$$

$$0 \le T_{l+} - \sum_{i} PTDF_{il}y_{im} \perp \lambda_{lm+} \ge 0 \quad (4c)$$
$$\forall l, m$$

Market-clearing constraints

coloc

Balance sales, generation, and flows at each node

$$0 = -\sum_{f} s_{fim} + \sum_{f,h} x_{fih} + \sum_{f} r_{fim} + y_{im} \text{ with free dual variable } \hat{w}_{im} \equiv prob(i,m)w_{im}$$
(5)

- Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)
- Question: Why not just solve all these conditions together, i.e., extensive form of the stochastic LCP?
- Answer: May have many scenarios *m* and this would make it an especially large LCP which could be computationally prohibitive. Instead can use Benders Decomposition

Market-clearing constraints

generation

• Balance sales, generation, and flows at each node

$$0 = -\sum_{f} s_{fim} + \sum_{f,h} x_{fih} + \sum_{f} r_{fim} + y_{im} \text{ with free dual variable } \hat{w}_{im} \equiv prob(i,m)w_{im}$$
(5)

- Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)
- Question: Why not just solve all these conditions together, i.e., extensive form of the stochastic LCP?
- Answer: May have many scenarios *m* and this would make it an especially large LCP which could be computationally prohibitive. Instead can use Benders Decomposition

- Market-clearing constraints
- Balance sales, generation, and flows at each node

$$0 = -\sum_{f} s_{fim} + \sum_{f,h} x_{fih} + \sum_{f} r_{fim} + y_{im} \text{ with free dual variable } \hat{w}_{im} \equiv prob(i,m)w_{im}$$
(5)

- Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)
- Question: Why not just solve all these conditions together, i.e., extensive form of the stochastic LCP?
- Answer: May have many scenarios *m* and this would make it an especially large LCP which could be computationally prohibitive. Instead can use Benders Decomposition

- Market-clearing constraints
- Balance sales, generation, and flows at each node

$$0 = -\sum_{f} s_{fim} + \sum_{f,h} x_{fih} + \sum_{f} r_{fim} + y_{im} \text{ with free dual variable } \hat{w}_{im} \equiv prob(i,m)w_{im}$$
(5)

- Overall stochastic linear complementarity problem (LCP) is (2), (4), (5)
- Question: Why not just solve all these conditions together, i.e., extensive form of the stochastic LCP?

wheeling fees

 Answer: May have many scenarios *m* and this would make it an especially large LCP which could be computationally prohibitive. Instead can use Benders Decomposition

- **Question**: Why not just solve all these conditions together, i.e., extensive form of the stochastic LCP?
- **Answer**: May have many scenarios *m* and this would make it an especially large LCP which could be computationally prohibitive
- We use a Benders-like method adapted from Fuller and Chung (2007) to decompose the problem appropriately
- Master problem (MP) will have variables independent of scenarios (e.g., x_{fih})
- Suproblem (SP) will have scenario-dependent variables and can be solved separately by scenario (or not)
- Will apply a Dantzig-Wolfe method for VIs (Fuller and Chung) to the "dual VI" of our problem resulting in a Benders-like method for stochastic (linear) complementarity problems

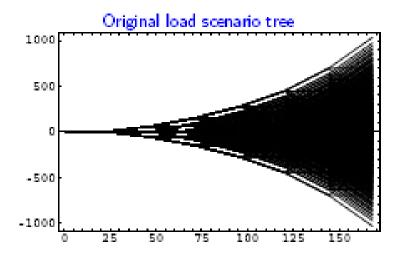
Algorithms Benders for Stochastic Complementarity Problems (results to be shown)

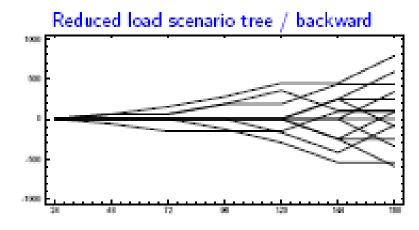
Scenario Reduction Methods

Scenario Reduction Methods

Stochastic Optimization Background

- Many attempts to solve such a stochastic problem, some examples of approaches
 - Decomposing the problem (e.g., L-shaped method)
 - Using a sampling approach
 - Using a scenario tree for the finite (but usually large) number of realizations, then approximating it with a reduced tree





Römisch, Dupačová, Gröwe-Kuska, Heitsch (2003)

52

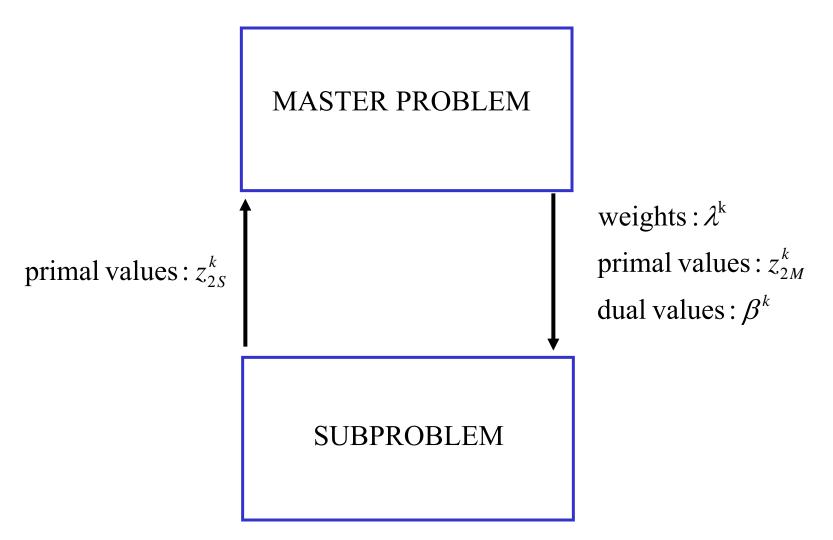
Stochastic Optimization Background

- We came up with a new merit function for stochastic VI's that helps to decide when the reduced tree is "good enough"
- For details see:

S.A. Gabriel, <u>J. Zhuang</u>, R. Egging, "Solving Stochastic Complementarity Problems in Energy Market Modeling Using Scenario Reduction," *European*

Journal of Operational Research, December 2007, accepted.

Overall Benders Approach



Selected Benders Method Numerical Results

Selected Numerical Results

- Three discrete probability distributions tried:
 - Symmetric
 - Right-skewed
 - uniform
- Varying number of scenarios
 - 1000, 2000, 3000, 5000, 10000
- No special computations for subproblem (i.e., splitting up into separate problems), although GAMS may be doing some of this on its own

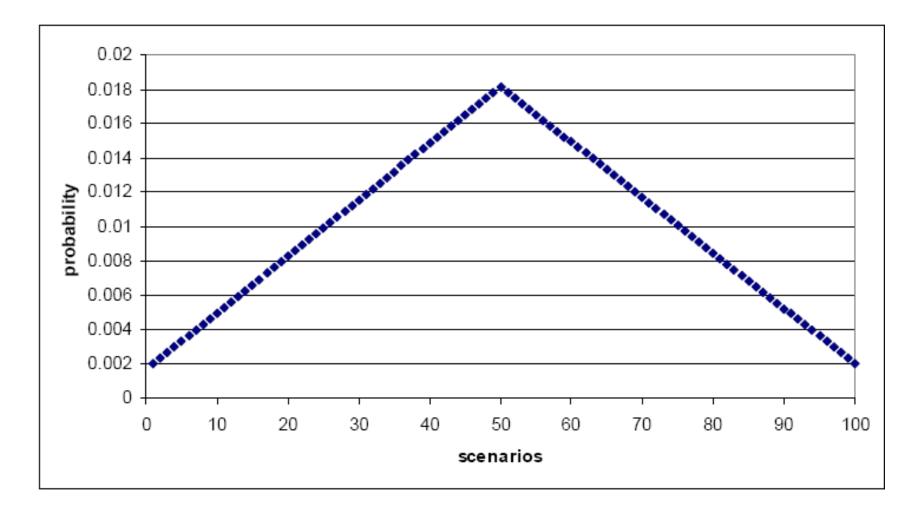


Figure 1: Discrete Symmetric, Triangular Dist. ($\alpha=0.1,\nu=0.9,\omega=0.1,m_1=\left\lfloor\frac{|M|}{2}\right\rfloor,|M|=100)$

of

scenarios

M		#	Benders	Ext.	#	Benders
		of	Time	Form	of	Time/Ext.
		Vars	(SP + MP = Total)	Time	Benders	Form Time
		Benders:Ext. Form	(s)	(s)	Iters.	(%)
1,0	00	28,000:28,016	2.34 + 0.12 = 2.46	6.97	4	35%
2,00	00	56,000:56,016	8.05 + 0.19 = 8.24	36.17	4	23%
3,00	00	84,000:84,016	17.80+0.19=17.99	103.38	4	17%
5,00	00	140,000:140,016	57.17+0.19=57.36	453.97	4	13%
10,00	00	280,000:280,016	294.08+0.17=294.25	3398.67	4	9%

Table 8: Numerical Results: $\alpha = 0.1, \nu = 0.9, \omega = 0.1$, start=0.9,end=1.5, Symmetric, Discrete, Triangular Distribution.

of Variables

M	#	Benders	Ext.	#	Benders
	of	Time	Form	of	Time/Ext.
	Vars	(SP+MP=Total)	Time	Benders	Form Time
	Benders:Ext. Form	(s)	(s)	Iters.	(%)
1,000	28,000:28,016	2.34 + 0.12 = 2.46	6.97	4	35%
2,000	56,000:56,016	8.05 + 0.19 = 8.24	36.17	4	23%
3,000	84,000:84,016	17.80+0.19=17.99	103.38	4	17%
5,000	140,000:140,016	57.17+0.19=57.36	453.97	4	13%
10,000	280,000:280,016	294.08+0.17=294.25	3398.67	4	9%

Table 8: Numerical Results: $\alpha = 0.1, \nu = 0.9, \omega = 0.1$, start=0.9,end=1.5, Symmetric, Discrete, Triangular Distribution.

Computational time for subproblem (SP) and master problem (MP) using Benders-like decomposition

M	#	Benders	Ext.	#	Benders
	of	Time	Form	of	Time/Ext.
	Vars	(SP + MP = Total)	Time	Benders	Form Time
	Benders:Ext. Form	(s)	(s)	Iters.	(%)
1,000	28,000:28,016	2.34 + 0.12 = 2.46	6.97	4	35%
2,000	56,000:56,016	8.05+0.19=8.24	36.17	4	23%
3,000	84,000:84,016	17.80+0.19=17.99	103.38	4	17%
5,000	140,000:140,016	57.17+0.19=57.36	453.97	4	13%
10,000	280,000:280,016	294.08+0.17=294.25	3398.67	4	9%

Table 8: Numerical Results: $\alpha = 0.1, \nu = 0.9, \omega = 0.1$, start=0.9,end=1.5, Symmetric, Discrete, Triangular Distribution.

Computational time for extensive form (no decomposition)

M	#	Benders	Ext.	#	Benders
	of	Time	Form	of	Time/Ext.
	Vars	(SP+MP=Total)	Time	Benders	Form Time
	Benders:Ext. Form	(s)	(s)	Iters.	(%)
1,000	28,000:28,016	2.34 + 0.12 = 2.46	6.97	4	35%
2,000	56,000:56,016	8.05 + 0.19 = 8.24	36.17	4	23%
3,000	84,000:84,016	17.80+0.19=17.99	103.38	4	17%
5,000	140,000:140,016	57.17+0.19=57.36	453.97	4	13%
10,000	280,000:280,016	294.08+0.17=294.25	3398.67	4	9%

Table 8: Numerical Results: $\alpha = 0.1, \nu = 0.9, \omega = 0.1$, start=0.9,end=1.5, Symmetric, Discrete, Triangular Distribution.

of Benders Iterations

M	#	Benders	Ext.	#	Benders
	of	Time	Form	of	Time/Ext.
	Vars	(SP + MP = Total)	Time	Benders	Form Time
	Benders:Ext. Form	(s)	(s)	Iters.	(%)
1,000	28,000:28,016	2.34 + 0.12 = 2.46	6.97	4	35%
2,000	56,000:56,016	8.05 + 0.19 = 8.24	36.17	4	23%
3,000	84,000:84,016	17.80+0.19=17.99	103.38	4	17%
5,000	140,000:140,016	57.17+0.19=57.36	453.97	4	13%
10,000	280,000:280,016	294.08+0.17=294.25	3398.67	4	9%

Table 8: Numerical Results: $\alpha = 0.1, \nu = 0.9, \omega = 0.1$, start=0.9,end=1.5, Symmetric, Discrete, Triangular Distribution.

Decomposed Approach Time/Extensive Form Time

M	#	Benders	Ext.	#	Benders
	of	Time	Form	of	Time/Ext.
	Vars	(SP+MP=Total)	Time	Benders	Form Time
	Benders:Ext. Form	(s)	(s)	Iters.	(%)
1,000	28,000:28,016	2.34 + 0.12 = 2.46	6.97	4	35%
2,000	56,000:56,016	8.05 + 0.19 = 8.24	36.17	4	23%
3,000	84,000:84,016	17.80+0.19=17.99	103.38	4	17%
5,000	140,000:140,016	57.17+0.19=57.36	453.97	4	13%
10,000	280,000:280,016	294.08+0.17=294.25	3398.67	4	9%

Table 8: Numerical Results: $\alpha = 0.1, \nu = 0.9, \omega = 0.1$, start=0.9,end=1.5, Symmetric, Discrete, Triangular Distribution.

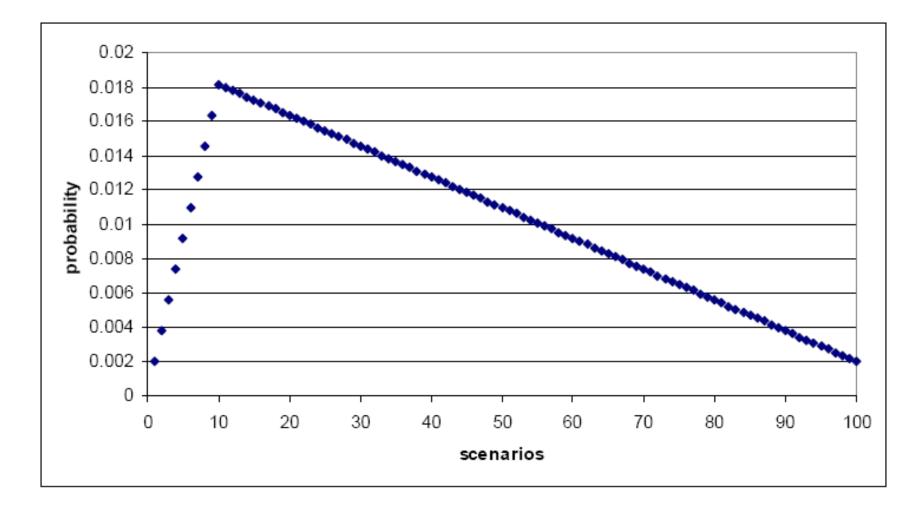


Figure 2: Discrete Right-Skewed, Triangular Dist. ($\alpha = 0.1, \nu = 0.9, \omega = 0.1, m_1 = \left\lfloor \frac{|M|}{10} \right\rfloor, |M| = 100$)

M	#	Benders	Ext.	#	Benders
	of	Time	Form	of	Time/Ext.
	Vars	(SP + MP = Total)	Time	Benders	Form Time
	Benders:Ext. Form	(s)	(s)	Iters.	(%)
1,000	28,000:28,016	3.84 + 0.22 = 4.06	7.58	6	54%
2,000	56,000:56,016	11.67 + 0.42 = 12.09	40.56	6	30%
3,000	84,000:84,016	40.23 + 0.33 = 40.56	118.70	6	34%
5,000	140,000:140,016	106.22+0.26=106.48	504.53	6	21%
10,000	280,000:280,016	$382.98 \pm 0.25 = 383.23$	4042.25	6	9%

Table 9: Numerical Results: $\alpha = 0.1, \nu = 0.9, \omega = 0.1$, start=0.9,end=1.5, Right-Skewed, Discrete, Triangular Distribution

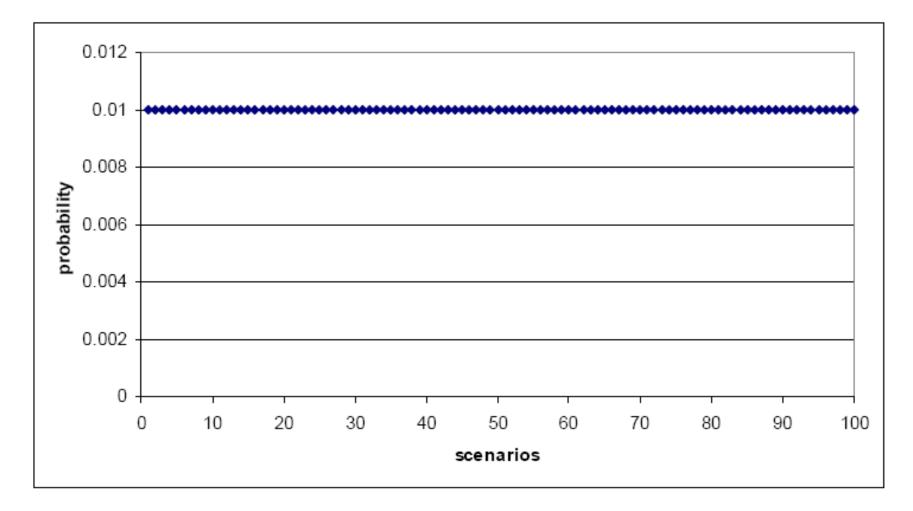


Figure 3: Discrete Uniform Dist. ($\alpha = 0.1, \nu = 0.1, \omega = 0.1, m_1 = \left\lfloor \frac{|M|}{2} \right\rfloor, |M| = 100$)

M	#	Benders	Ext.	#	Benders
	of	Time	Form	of	Time/Ext.
	Vars	(SP + MP = Total)	Time	Benders	Form Time
	Benders:Ext. Form	(s)	(s)	Iters.	(%)
1,000	28,000:28,016	2.28 + 0.30 = 2.58	6.86	4	38%
2,000	56,000:56,016	6.98 + 0.16 = 7.14	37.02	4	19%
3,000	84,000:84,016	25.92+0.19=26.11	106.69	4	24%
5,000	140,000:140,016	69.58+0.05=69.63	431.27	4	16%
10,000	280,000:280,016	250.06+0.19=250.25	3439.97	4	7%

Table 12: Numerical Results: $\alpha = 0.1, \nu = 0.1, \omega = 0.1$, start=0.9,end=1.5, Uniform, Triangular Distribution

Ongoing Work

 Apply Benders-like decomposition method to stochastic complementarity problems for natural gas using World Gas Model (WGM), WGM has multiple years, seasons, players, and over 70 countries

Related Publications

- 1. S. A. Gabriel, S. Vikas, D. M. Ribar, 2000. "Measuring the Influence of Canadian Carbon Stabilization Programs on Natural Gas Exports to the United States via a Bottom-Up Intertemporal Spatial Price Equilibrium Model," *Energy Economics*, 22, 497-525.
- 2. S. A. Gabriel, J. Manik, S. Vikas, 2003. "Computational Experience with a Large-Scale, Multi-Period, Spatial Equilibrium Model of the North American Natural Gas System," *Networks and Spatial Economics*, 3, 97-122.
- 3. S. A. Gabriel, S. Kiet, J. Zhuang, 2005. "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets", *Operations Research*, 53(5), 799-818.
- 4. S. A. Gabriel, J. Zhuang, S. Kiet, 2005. "A Large-Scale Complementarity Model of the North American Natural Gas Market", *Energy Economics*, 27, 639-665.
- 5. R. Egging, S. A. Gabriel, "Examining Market Power in the European Natural Gas Market", 2006. *Energy Policy*, 34 (17), 2762-2778.
- 6. S. A. Gabriel and Y. Smeers, 2006. "Complemenatarity Problems in Restructured Natural Gas Markets," *Recent Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, Edited by A. Seeger*, Vol. 563, Springer-Verlag Berlin Heidelberg, 343-373.
- 7. J. Zhuang, S.A. Gabriel, 2008, "A Complementarity Model for Solving Stochastic Natural Gas Market Equilibria," *Energy Economics 30*(1), 113-147.
- 8. S.A. Gabriel, J. Zhuang, R. Egging, "Solving Stochastic Complementarity Problems in Energy Market Modeling Using Scenario Reduction," *European Journal of Operational Research*, December 2007, forthcoming.
- 9. R. Egging, S.A. Gabriel, F.Holz, J. Zhuang, "A Complementarity Model for the European Natural Gas Market," *Energy Policy*, January, 2008, forthcoming.