Optimizing the service of the Orange Line

Overview

- Increased crime rate in and around campus
- Shuttle-UM Orange Line
- 12:00am - 3:00am late night shift
- A student standing or walking on and around campus during these hours has a greater chance of being susceptible to crime

Objective

- Increase Frequency of Service = Decrease avg. waiting time
- Remain Cost Effective
- Possible Improvements:
- Larger shuttles
- Increase fleet size
- Reduce \# of stops

Course Concepts

- For this project we used linear programming formulation to determine a best solution given our approaches.
- Each approach has an objective function, decision variables, constraints, and parameters. Non-negativity of variables was assumed for each approach because a negative number of vehicles or stops would not be applicable in this project.
- The 'gin' command was used to determine general integer variables because fractions cannot be applied to number of vehicles or stops.

Current Orange Line Schedule

- 1 Shuttile running on Sunday-Wednesday late night shift
- 3 Shuttles running on Thursday-Saturday shift
- Shaded vs. Un-shaded

After Midnight							
\bigcirc	\# 4	\#7	\#10	\#14	173	\$27	0
241200	1204	1207	$12 \cdot 11$	12	123	12\%	1280
${ }^{12710}$	$12 \cdot 14$	1217	1221	123	123	123	1220
12:20	123	1277	c2,	123	1242	1245	1250
12930	$13: 3$	127	L241	124	125	1256	1.60
1200	1234	1271	1251	12 *	$1: 102$	1106	1:10
1230	1885	1285	1.91	1*	1:12	$1: 16$	120
1.00	1909	1177	1:11	t.14	12	48	1180
1.70	1:4	$1: 17$	13	13	13	136	1.40
131	124	127	131	18	142	14.46	1.50
13	12	13	(14)	14	1.5	155	200
1000	13/4	1197	15	19	20	$2{ }^{20}$	210
1930	1534	$11 / 7$	201	25	212	235	230
200	204	207	2.11	21	228	228	230
:10	2:4	2.17	23	24	23	238	210
230	2×1	371	23	20	242	206	230
20	23	27	234	24	20	266	300
200	234	247	251	$2{ }^{2}$	ate	306	3.10
230	$8: 34$	257	3	3 30	312	3.16	$3{ }^{3}$
300	Sal	307	$3: 11$	318	372	3%	1330
Shaded times operate Thursday through Saturday only.							

Orange Line Information

- Round Trip Distance: 4.66 mi
- Round Trip Time (R): 30min
- Seat Capacity (s): 36
- Total Capacity: 69 passengers
- Mean dwell time: 45 sec ($5 \mathrm{sec}-5 \mathrm{~min}$)
- Sun-Wed: 21 secs
- Thurs-Sat: 78 secs
- Frequency Sun-Wed: 2 shuttles/hr
- Frequency Thurs-Sat: 6 shuttles/hr
- Operating Cost per bus (C): \$50/hr
- Driver: $\$ 12.85$
- Maintenance (tires, oil, filter, etc.): \$3.20
- Fuel: $\$ 6.50$
- Depreciation: $\$ 13.45$
- Overhead (plant, administrative salaries, storage): \$14.00

Alternative \#1

- (+) Larger seating and load capacity needed @ peak hours
- (-) Frequency remains unchanged

Operating Costs	Current	Using Larger Shuttle (Th-Sat)	Additional Operating Cost /Semester
Driver	$\$ 12.85$	$\$ 12.85$	
Maintenance	$\$ 3.20$	$\$ 4.26$	
Fuel	$\$ 6.50$	$\$ 8.65$	
Depreciation	$\$ 13.45$	$\$ 17.89$	
Overhead	$\$ 14.00$	$\$ 16.50$	
Cost/Semester	$\$ 17,850.00$	$\$ 19,402.95$	$\$ 1,552.95$

Alternative \#1 (LINDO-input)

- x1 = \# of shuttles running on Sun-Wed shift
- $\times 2=$ \# of shuttles running on Thurs-Sat
- x3 $=$ \# of larger shuttles running on Sun-Wed
- x4 = \# of larger shuttles running on Thurs-Sat

IShuttle-UM Problem, LP formulation in LINDO
$\max .50 \times 1+.25 \times 2+.10 \times 3+.15 \times 4$
s.t.
c1: $69 \times 1+92 \times 3>=48 \quad$! (Peak demand capacity Sun-Wed)
c2: $69 \times 2+92 \times 4>=81$
c3: $10200 \times 1+7650 \times 2+11087 \times 3+8315 \times 4<=52000$! (Cost constraint)
c4: $\mathrm{x} 1>=1$
c5: $x 2>=3$
c6: $\times 3, \times 4>=0$
End
gin x 1
gin $x 2$
gin $x 3$
gin $\times 4$
! Maximize Frequency
! (Peak demand capacity Thurs-Sat)
! (Sun-Wed constraint)
! (Thurs-Sat constraint)
! (Non-negativity for large buses)

Alternative \#1 (LINDO-output)

LP OPTIMUM FOUND AT STEP 5
OBJECTIVE VALUE = 2.17401958
FIX ALL VARS. (2) WITH RC $>0.000000 \mathrm{E}+00$
NEW INTEGER SOLUTION OF 2.00000000 AT BRANCH O PIVOT 11
BOUND ON OPTIMUM: 2.000000
ENUMERATION COMPLETE. BRANCHES= 0 PIVOTS= 11
LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...
OBJECTIVE FUNCTION VALUE

1) 2.000000

VARIABLE VALUE REDUCED COST
$\begin{array}{lll}\mathrm{X} 1 & 2.000000 & -0.500000\end{array}$
$\begin{array}{lll}\mathrm{X} 2 & 4.000000 & -0.250000\end{array}$
$\begin{array}{lll}\mathrm{X} 3 & 0.000000 & -0.100000\end{array}$
X4 $0.000000-0.150000$
$\begin{array}{lll}\text { X3,X4 } & 0.000000 & 0.000000\end{array}$
ROW SLACK OR SURPLUS DUAL PRICES
2) $90.000000 \quad 0.000000$
3) $195.000000 \quad 0.000000$
4) $1000.000000 \quad 0.000000$
5) $1.000000 \quad 0.000000$
6) $1.000000 \quad 0.000000$
7) $0.000000 \quad 0.000000$

NO. ITERATIONS= 12
BRANCHES $=0$ DETERM. $=1.000 E 0$

Alternative \#2

- We removed stops with little to no frequency of use:

$$
\text { - 1, 8, 10, 19, 25, 29, } 30
$$

- Reduced round trip time (R): 25min
- Frequency, Sun-Wed: 1 shuttle/ 25 min
- Frequency, Thurs-Sat: 1 shuttle/ 8.33 min

Alternative \#2 (LINDO-input)

- $\times 5=$ \# of stops removed during the Sun-Wed shift
- x6 = \# of stops removed during the Thurs-Sat shift
$\max 3 \times 5+x 6 \quad$! Maximize Frequency
s.t.
c1: $0.3375 \times 5+1.3 \times 6<=10$! Dwell time constraints
c2: $x 5<=7$! Maximum removal of stops Sun-Wed
c3: $x 6<=7 \quad$! Maximum removal of stops Thurs-Sat
c4: $x 5, x 6>=0$
! Non-negativity constraint
end
gin $\times 5$
gin $\times 6$

Alternative \#2 (LINDO-output)

- LP OPTIMUM FOUND AT STEP 2
- OBJECTIVE VALUE $=26.8750000$
- NEW INTEGER SOLUTION OF 26.0000000 AT BRANCH O PIVOT 4
- BOUND ON OPTIMUM: 26.00000
- ENUMERATION COMPLETE. BRANCHES= 0 PIVOTS= 4
- LAST INTEGER SOLUTION IS THE BEST FOUND
- RE-INSTALLING BEST SOLUTION...
- OBJECTIVE FUNCTION VALUE
- 1) 26.00000
- VARIABLE VALUE
- X5 $7.000000 \quad-3.000000$
- X6 $5.000000 \quad-1.000000$
- X5,X6 $0.000000 \quad 0.000000$
- ROW SLACK OR SURPLUS DUAL PRICES
- 2) $1.137500 \quad 0.000000$
- 3) $0.000000 \quad 0.000000$
- 4) $2.000000 \quad 0.000000$
- 5) $0.000000 \quad 0.000000$
- NO. ITERATIONS= 4
- BRANCHES= 0 DETERM. $=1.000 E 0$

Alternative \#2

$\circ(+)$ Slightly increase frequency

- +) No addititional costs
$\circ(-)$ Beneficial to passengers within the proximity of the available stops
- (-) Increased average walking distance for other passengers not within proximity

Conclusion

- (+) Frequency (Sun-Wed) $=4$ shuttles/hr
- (+) Frequency (Thurs-Sat)= 8 shuttles/hr
- (-) Increased cost $=\$ 10,200+\$ 7,650=\$ 17,850$ / semester
- Within \$52,000 budget
- CHOOSE ALTERNATIVE \#1
- OPTIMMAL SOLUTION!

Questions?

Copyright © 2003

