Optimization of a Roadway Network

ENCE 360
May 17, 2005

Jessie Hyder
Sona Verma
Jake Wilson
Optimization of a Road Network

- Objective
- Proposed Road Network
- Description of Project
- Problems Encountered
- Applicable Course Concepts
- Future Improvements/Expansions
Why Optimize?

- Optimization is an integral component of engineering systems, designs, and problems.
- Allows more complex problems/situations to be modeled in an easier manner.
Objective

- Study a road network
 - Optimize time needed for all units who have entered network to leave
 - Network will be arbitrary
 - Extendable to other ideas and programs.
Objective Continued

- The network will have 5 nodes
 - 2 to 4 links emanating from each node.

- Two-directional flow will be accounted for
 - separate variables for capacity on each direction

- The network will have four sets of inflow and outflow pairs at roughly the cardinal directions.
 - North, South, East and West
Objective Continued

- Each traffic flow will be tracked separately, and will have different amounts of traffic traveling between the points.
 - For example, the northern point may have 1000 cars entering, of which 250 will exist at the west point, 300 the east, and 450 at the south.
Objective Continued

- Tracking each set of inflow separately will ensure that the traffic will not optimize by filling the outflow at the northern point with the inflow from the northern point
 - does not represent typical drivers.
- Having multiple destinations for each origin is more realistic and similar to the real world.
Proposed Road Network
Description of Project

- Determined network (seen on previous slide)
- Calculated time through velocity and distance of roads on the network
- Calculated actual time
 - As the capacity of the road reaches full, it will take longer time for the driver to exit the road
 - Used equation $T_i = T_{0i}/[1-(V_i/C_i)]$
Decision variables were assigned
- Volumes for each link on the road network

Constraints
- Each inflow at a node must equal its outflow

Ultimate goal
- Minimize travel time
- Time = 204.060 hours
 - Note: Excel used branch and bound method to find travel time
Problems Encountered

- First time program was run there was no feasible answer.
 - Non-negativity
- Numbers were off since velocity and travel weren’t on the same scale
- Inflow != Outflow
 - Had to set constraint
Applicable Course Concepts

- Excel Programming
 - solver
 - easier to visualize
- Integer Constraints
- Concepts from transportation problems learned in class.
Future Improvements/Expansions

- Analysis on realistic problems
 - Increase capacity
 - Large influx of traffic on one area of network
- Enter in cost value
 - Find value of an hour for driver and use as a constraint to find travel time
- Extra roads added to the network
Questions ???