Optimization of a Roadway Network

ENCE 360
May 17, 2005

Jessie Hyder Sona Verma Jake Wilson

Optimization of a Road Network

- Objective
- Proposed Road Network
- Description of Project
- Problems Encountered
- Applicable Course Concepts
- Future Improvements/ Expansions

Why Optimize?

- Optimization is an integral component of engineering systems, designs, and problems.
- Allows more complex problems/ situations to be modeled in an easier manner.

Objective

- Study a road network
- Optimize time needed for all units who have entered network to leave
- Network will be arbitrary
- Extendable to other ideas and programs.

Objective Continued

- The network will have 5 nodes
- 2 to 4 links emanating from each node.
- Two-directional flow will be accounted for
- separate variables for capacity on each direction
- The network will have four sets of inflow and outflow pairs at roughly the cardinal directions.
- North, South, East and West

Objective Continued

- Each traffic flow will be tracked separately, and will have different amounts of traffic traveling between the points.
- For example, the northern point may have 1000 cars entering, of which 250 will exist at the west point, 300 the east, and 450 at the south.

Objective Continued

- Tracking each set of inflow separately will ensure that the traffic will not optimize by filling the outflow at the northern point with the inflow from the northern point
- does not represent typical drivers.
- Having multiple destinations for each origin is more realistic and similar to the real world.

Proposed Road Network

Description of Project

- Determined network (seen on previous slide)
- Calculated time through velocity and distance of roads on the network
- Calculated actual time
- As the capacity of the road reaches full, it will take longer time for the driver to exit the road
- Used equation Ti=T0i/[1-(Vi/Ci)]

Description of Project Continued

- Decision variables were assigned
- Volumes for each link on the road network
- Constraints
- Each inflow at a node must equal its outflow
- Ultimate goal
- Minimize travel time
- Time $=204.060$ hours
- Note: Excel used branch and bound method to find travel time

Problems Encountered

Togn.

- First time program was run there was no feasible answer.
- Non-negativity
- Numbers were off since velocity and travel weren't on the same scale
- Inflow != Outflow
- Had to set constraint

Applicable Course Concepts

- Excel Programming
- solver
- easier to visualize
- Integer Constraints
- Concepts from transportation problems learned in class.

Future Improvements/Expansions

- Analysis on realistic problems
- Increase capacity
- Large influx of traffic on one area of network
- Enter in cost value
- Find value of an hour for driver and use as a constraint to find travel time
- Extra roads added to the network

Questions ???

http://www.aatraffic.com/SIDRA/Simulation.htm

