ENCE 667 Final Report

Project Performance
Measurement Techniques
in the Development and
Implementation of a
Data Warehouse

Presented By:
Nizar A. Al Rihani
Michael J. Casey

Overview

- Development of a Data Warehouse for major telecommunications company.
- A professional consultant was hired to develop the Warehouse.
- Two phases were considered.
 - Recurring task: Monthly downloading of data.
 - Development and Implementation

Project Performance Methods Used

- Goal Programming. Develop an optimal strategy for downloading data to DW on a monthly basis.
 - Software: LINDO
- Monte Carlo Simulation. Assess variability in schedule and cost due to uncertainty.
 - Software: MS Project, @Risk

Phase II - 6 mo. contract

- 5th 25th of each month: Receiving and downloading data files into the Warehouse.
- 25th of the current month 5th of the next month: Data processing and Warehouse development.

Goal Programming

- Goal 1: Downloading data files should be completed in 20 days. Otherwise, there is a penalty of \$850/day.
 Goal 2: Data processing and evaluation should be completed in 10 days. Otherwise, there is a penalty of \$1000/day.
- The Warehouse receives data files from two main offices, located in New York and Atlanta.
- A linear program is formulated to determine the optimal number of files to be received from each office.

Problem Formulation

Input:

MIN 850S1P+1000S2P SUBJECT TO 0.25X1+0.1667X2+S1N-S1P=20 0.1667X1+0.0833X2+S2N-S2P=10 455X1+270X2=22680 END GIN X1 GIN X2

 Result: No penalties. 84 files received from Atlanta office, no files received from the New York office.

Input:

MIN 850S1P+1000S2P SUBJECT TO 0.25X1+0.1667X2+S1N-S1P=20 0.1667X1+0.0833X2+S2N-S2P=10 455X1+270X2=22680 X1>=1 X2>=1 END

Result: No penalties. 49
 data files received from
 New York office, one file
 received from Atlanta office.

Phase I

Phase 1:

- I. Determine the DW requirements.
- II. Design and develop the system code.
- III. Test the system performance.
- IV. Redesign based on testing.
- V. Conduct user testing.
- VI. Integrate the DW with existing systems.
- VII. Document development & implementation process.
- VIII. Plan for future work.

• AON Network:

Monte Carlo Simulation

- Uncertainties: task durations in coding, DW development and resource utilization.
- Apply Simulation to provide output effect on project duration and cost.
- Data from real project: Tasks, monthly time sheet data.

Modeling Uncertainty

 BestFit used to fit distributions to employee utilization data.

@Risk Functions Duration (Uniform)

ID	Name	Duration	Cost	@RISK: Functions
1	Data Warehouse	98.75 days	\$403,440.00	Duration=RiskOUTPUT()
2	Requirements Analysis	32 days	\$62,240.00	
13	Development DB and Loading	18 days	\$67,360.00	
14	Develop ETL code and processes for loading the /	18 days	\$17,280.00	Duration=RiskUNIFORM(18,36)
15	Develop ETL code and processes for loading the (18 days	\$17,280.00	Duration=RiskUNIFORM(18,36)
16	Develop ETL code and processes for loading the (15 days	\$7,200.00	Duration=RiskUNIFORM(15,30)
17	Consolidate ETL code processes.	5 days	\$20,800.00	Duration=RiskUNIFORM(5,10)
18	Add 5 new MicroStrategy reports/change existing	5 days	\$2,400.00	Duration=RiskUNIFORM(5,10)
19	Develop new A/R Journal Export module and Peop	5 days	\$2,400.00	Duration=RiskUNIFORM(5,10)

- Utilization

ID	Resource Name	@RISK: Functions
1	A	Max. Units=RiskEXPON(10)
2	В	Max. Units=RiskUNIFORM(0,250)
3	С	Max. Units=RiskTRIANG(0,137.5,215.4)
4	D	Max. Units=RiskTRIANG(0,137.5,196)
5	E	Max. Units=RiskUNIFORM(0,176.3)
6	F	Max. Units=RiskTRIANG(0,0,159)
7	G	Max. Units=RiskUNIFORM(0,176.3)
8	Н	Max. Units=RiskTRIANG(0,0,193.8)

Results

- CostDistributiondata:
- Sensitivity
 Analysis
 (tornado
 diagram)

Conclusions

- Development of a Data Warehouse is a necessary step to optimize profits.
- Monte Carlo simulation is an effective method to measure changes in cost and schedule.
- "LINDO" and "@Risk" are simple, effective and user-friendly software.
- Optimal number and exact locations of data centers should be determined to minimize the cost of data transfer.

