ENCE627

FEASIBILITY STUDIES FOR ALEXAN VIRGINIA CENTER

Fall 2002 Course Project Presentation

ENCE627

- **Presentation Overview:**
- 1. Overview on VA Center.
- 2. Definition of Decision and Chance Nodes.
- 3. Implementation of Tree.
- 4. Conclusion.

ENCE627

Overview on VA CENTER

- 1. This is a 7.37 acres site.
- 2. Total budget is \$75,450,000
- 3. Starting date April 23rd, 2001
- 4. Anticipated finish sep 1st, 2003
- 5. Project is slightly behind schedule.
- 6. Money wise, project is within budget so far.

 \mathbb{A}

ENCE627

UNIT MIX

Qty	Bedroom	Bathroom	Additions
193	1	1	N/A
43	1	1	LOFT
5	1	1	DEN
174	2	2	N/A
3	2	2	LOFT

Amirali Nasserian ENCE627 **INTRODUCING DECISION** AND CHANCE NODES

ENCE627

GO/ NO GO DECISION NODE

They have \$18,500,000 that they can invest in the VA CENTER or in a savings account for 15 years and get a flat 2.5% interest rate.

ENCE627

SOFT COST DECISION NODE

GROUP	COST	GROUP	COST
Arch1, Civil 1	\$ 5,703,204.0	Arch2, Civil 1	\$ 5,784,349.2
Arch1, Civil 2	\$ 5,813,441.2	Arch2, Civil 2	\$ 5,894,586.4
Arch1, Civil 3	\$ 5,923,678.4	Arch2, Civil 3	\$ 6,004,823.6

ENCE627

ARCHITECT, ENGINEER PERFORMANCE CHANCE NODE Small talks with 3 PM's Assumptions for distributions: 1- They should have a known Min & Max 2- They should be continous

ENCE627

Group	Distribution
Arch1, Civil 1	Beta general (.63132,1.5937,8808.8,240625)
Arch1, Civil 2	Beta general (.62213,0.63641,4584.6,178654)
Arch1, Civil 3	Uniform (1455.1,160642)
Arch2, Civil 1	Beta general (.35364,.80267,9962.7,142176)
Arch2, Civil 2	Beta general (0.93128,0.98251,2114.4,122386)
Arch2, Civil 3	Uniform (3117.8,100460)

ENCE627

CONSTRUCTION SCHEDULE DECISION NODE

Three type of schedule is available
Each one has it's own cost and duration
Each one has it's own uncertainty

ENCE627

Construction Schedule Table

Schedule	Most likely Duration	Cost
Crashed	20 months	\$ 53,234,510
Normal	27 months	\$ 49,304,100
Slow	31 months	\$ 48,559,250

Construction Performance Chance Node

Construction projects are never on schedule!

There is a chance to be behind or ahead schedule

ENCE627

Construction Schedule	Min (month)	Most Likely (month)	Max (month)	Distribution
Crashed	19	20	23	Triangle (19,20,23)
Normal	25	27	29	Triangle (25,27,29)
Slow	32	32	34	Triangle (32,32,34)

ENCE627

ENCE627

ENCE627

PENALTY

There is this assumption that, for every month that the construction gets delayed there is an additional cost of \$500,000. This is both for "General Conditions" and also "Field and Home Office overhead".

ENCE627

FINANCING

Assumptions:

- 1- Construction loan comes with an interest rate of 9.3% and it's calculated for the full year.
- 2- When the construction is complete, company applies for another loan with rate of 5.3% and pays off the new one.

ENCE627

INCOME

Assumptions:

- 1- After one year of construction club house and finished units will be turned in and leasing starts.
- 2- Each month new units will be leased.
- 3-Average base monthly rent is \$1531.

ENCE627

INCOME

Assumptions:

4-10% of the income is allocated for property management services.

5- Rental fee will increase for 3.5% every year.

6- Final judgment is based on net present value. (NPV)

ENCE627

First I tried simulating the decision tree.

Did not work because @risk never tells you which scenario has been selected in each iteration. (Or at least I couldn't use @risk in a way that shows the chosen scenario in each iteration.)

ENCE627

So I decided to convert the continuous distributions to the discrete ones!

For example:

ENCE627

Same thing happened to construction schedule distributions.

For Example:

ENCE627

ENCE627

Now that every node and it's relative value is known I just needed to go ahead and create the decision tree.

BUT I COULDN'T!

Because I reached the capacity of Decision Tree Software (student version)
I had 6*3*3*4=216 branches and it didn't work

ENCE627

As a result I decided to divide it to six trees :

(See the handouts)

ENCE627

Final Step :

Doing the financial analysis and running sensitivity on two possible changeable factors:

- 1- Base rent values.
- 2- Interest rates.

ENCE627

Sample Financial Calculations:

Crashed	Schedule
Total cost	\$73,482,118.40
Initial investment	\$18,500,000.00
Total loan	\$54,982,118.40
Year 1 interest	\$5,113,337.01
Year 2 interest	\$5,588,877.35
Year 1 income	\$0.00
Year 2 income	\$7,385,833.80
Total Payable	\$58,298,498.96

ENCE627

Loan Payments with 5.3 % Apr.

	Loan Calculations				
year 3	\$58,298,498.96	\$8,000,000.00	\$52,964,319.4		
year 4	\$52,964,319.41	\$8,000,000.00	\$47,347,428.34		
year 5	\$47,347,428.34	\$8,000,000.00	\$41,432,842.04		
year 6	\$41,432,842.04	\$8,000,000.00	\$35,204,782.6		
year 7	\$35,204,782.67	\$8,000,000.00	\$28,646,636.1		
year 8	\$28,646,636.15	\$8,000,000.00	\$21,740,907.8		
year 9	\$21,740,907.87	\$8,000,000.00	\$14,469,175.9		
year 10	\$14,469,175.98	\$8,000,000.00	\$6,812,042.3		
year 11	\$6,812,042.31	\$6,812,042.31	\$0.0		

ENCE627

Net Present Value Calculations (10% Yield Rate)

		Management		Net Value Each	Net Present
Year	Gross Income	Expense	Loan Payment	Year	Value
	(\$58,298,498.96)			\$0.00	\$0.00
2				\$0.00	\$0.00
3	\$9,039,024.00	(\$903,902.40)	(\$8,000,000.00)	\$135,121.60	\$101,518.86
4	\$9,355,389.84	(\$935,538.98)	(\$8,000,000.00)	\$419,850.86	\$286,763.78
5	\$9,682,828.48	(\$968,282.85)	(\$8,000,000.00)	\$714,545.64	\$443,676.62
6	\$10,021,727.48	(\$1,002,172.75)	(\$8,000,000.00)	\$1,019,554.73	\$575,512.07
7	\$10,372,487.94	(\$1,037,248.79)	(\$8,000,000.00)	\$1,335,239.15	\$685,188.81
8	\$10,735,525.02	(\$1,073,552.50)	(\$8,000,000.00)	\$1,661,972.52	\$775,322.45
9	\$11,111,268.40	(\$1,111,126.84)	(\$8,000,000.00)	\$2,000,141.56	\$848,255.27
10	\$11,500,162.79	(\$1,150,016.28)	(\$8,000,000.00)	\$2,350,146.51	\$906,083.22
11	\$11,902,668.49	(\$1,190,266.85)	(\$6,812,042.31)	\$3,900,359.33	\$1,367,052.15
12	\$12,319,261.89	(\$1,231,926.19)	\$0.00	\$11,087,335.70	\$3,532,766.84
13	\$12,750,436.05	(\$1,275,043.61)	\$0.00	\$11,475,392.45	\$3,324,012.44
14	\$13,196,701.31	(\$1,319,670.13)	\$0.00	\$11,877,031.18	\$3,127,593.52
15	\$13,658,585.86	(\$1,365,858.59)	\$0.00	\$12,292,727.27	\$2,942,781.17
			Total Net Prese	ent Value	\$18,916,527.19

ENCE627

Conclusion and Comments:

1. Up to this point all six trees are built

- 2. Financial analysis are under execution.
- 3. I like to try another method that I can actually use simulation (Maybe using formulated expected values, @Risk and MS Excel.)

