# Sidewalk and Bus Stop Design

#### Presented by: Dan Feinblum 5/9/01 ENCE 667





## Project Overview

- Consultants Working For Delaware Department of Transportation (DelDOT)
- Work in Churchmans Crossing Area
- 3-5 Years for All Design and Construction
- Design New Sidewalks and Bus Stops
- Improve Existing Conditions

# **Project Objectives**

- Improve Pedestrian Mobility
- Promote a Multi-modal Transportation System
- Improve Traffic Conditions
- Complete and Connect Existing Networks
- Improve Drainage
- Satisfy Americans With Disabilities Act (ADA)

### **Performance Measures**

- Critical Path Method (CPM)
- Project Crashing
- Subcritical Path Analysis
- Lead-Lag (Precedence) Relationships

### **Develop Base Schedule**

- Determine Activities and Their Characteristics
- Create Activity on Arrow Diagram
- Complete Forward and Backward Pass
- Input into Primavera Scheduling Software
- Determine Critical Path and Overall Project Duration

#### **Base Schedule**



### **Critical Path of Base Schedule**

- Activities on Critical Path: 10, 20, 110, 270, 130, 120, 280, 290, 220, 200, 240, 300, 230, 320, 210, and 250
- Verified Project Duration of 256 Days and Critical Path in Linear Program

# Network Diagram for Base Schedule



## **Project Crashing**

- Modified Linear Program of Base Schedule
- Allowed for 11 Activities to be Crashed
- Could Not Crash an Activity To Less Than 1 Day
- Used Linear Programming to Generate Cost VS. Project Duration Graph
- Minimum Duration of Project = 57 Days

# Cost VS. Project Duration



220 Days Costs \$5600
210 Days Costs \$7225

Difference = \$1625

#### **Subcritical Path**

- 20% of Activities Generate 80% of Delays
- Paerto (1848-1923) Analysis
- Quantifies the Criticality of All Project Paths
- Utilizes the Following Equations:

$$\lambda = \frac{\alpha_2 - \beta}{\alpha_2 - \alpha_1} (100\%) \qquad \lambda' = 1 + 0.09\lambda$$

 $\alpha_1$  = the minimum total slack (or lag) in a network  $\alpha_2$  = the maximum total slack in the network  $\beta$  = total slack for the path whose criticality is to be calculated.

# Subcritical Path Analysis

| Path Number | Activities on Path | TS  | G (%)  | G' (%) |
|-------------|--------------------|-----|--------|--------|
| 1           | *                  | 0   | 100.00 | 10.00  |
| 2           | 80, 70, 100        | 6   | 96.23  | 9.66   |
| 3           | 50, 40             | 12  | 92.45  | 9.32   |
| 4           | 170                | 20  | 87.42  | 8.87   |
| 5           | 160                | 33  | 79.25  | 8.13   |
| 6           | 190                | 103 | 35.22  | 4.17   |
| 7           | 60, 310, 260       | 130 | 18.24  | 2.64   |
| 8           | 180, 140           | 145 | 8.81   | 1.79   |
| 9           | 150                | 146 | 8.18   | 1.74   |

\* Path 1 includes the following activities : 320, 300, 290, 280, 270,250, 240, 230,220, 210, 200, 20, 130, 120, 110, 10

# Lead- Lag (Precedence) Relationships

- Utilizes CPM
- Shortens Project Duration by Allowing Activities to be Completed Simultaneously
- Implement Where Activities Could be Completed Simultaneously
- Shortened Project Duration from 256 to 224 Days (Saves 32 Days)

Example :Activity 110 can begin 5 days after activity 20 starts. Allows adequate time for initial SW & BS locations to be developed so that Right of Way can begin working

# Modified Schedule With Lead-Lag Relationships



## Future Work

- More Detailed Version of Schedule
- Implement Multi-Project Scheduling
- Resource Allocation
- Probability Analysis of Activity/Project Durations

#### Any Questions?