
Decision for DCWASA

SELECT CHEMICALS TO IMPROVE WASTEWATER
TREATMENT PROCESS"

- DCWASA, District of Columbia Water and Sewer Authority, is the largest wastewater treatment plant in the world.
- Wastewater is treated from MD, VA, and DC.
- DCWASA serves more than two million people and the average flow to the plant is 370 million gallons per day.

Nitrification and Denitrification process

 These processes reduce the amount of nitrogen in wastewater, which will be discharged to

Potomac river.

Dentirification demonstration reactors and sedimentation basins at the Blue Plains

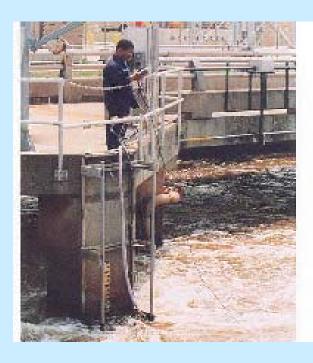
- Nitrification and Denitrification process
 - -However, the nitrification and denitrification processes change the wastewater alkalinity.
 - -To maintain a target residual alkalinity of 80 mg/l as CaCO3, supplemental alkalinity addition to the nitrification process is required
 - -From 1981-2001, additional alkalinity for the process at DCWASA was provided by lime.

- •For years, the lime storage and feed facilities have experienced repeated failures and require nearly continual maintenance
- •In addition, the lime facilities created additional plant maintenance issues according to migration of lime dust.
- •As the result, DCWASA decided to construct the temporary Sodium Hydroxide Facilities in 2000.

- •This facility satisfies the alkalinity needs of the nitrification process.
- •However, costs for sodium hydroxide are high, especially compared to lime, and are wide variation because sodium hydroxide is produced as a byproduct of production of chlorine based compounds.
- •Also, sodium hydroxide is a very hazardous chemical which can effect to those who work in facility and around facility.

Objective

• Select 1) the chemical and 2) the alternative for the nitrification and denitrification


process according to

1.safety

2.cost

3.store and maintenance

4.effect to process

Given DCWASA's past history with lime and sodium hydroxide, as part of the preliminary design of the nitrification f acilities, these chemicals were evaluated for use in providing supplemental alkalinity.

- 1.Lime (CAO)
- 2. Sodium hydroxide (NaOH, Caustic soda)
- 3. Potassium hydroxide (KOH)
- 4. Magnesium hydroxide (Mg(OH)2)
- 5. Sodium carbonate (Soda ash)

Subjective rating chemicals

From the given information, we ask the administrator and his team to order this chemicals based on these aspects

- 1.safety
- 2.cost
- 3.store and maintenance
- 4.effect to process

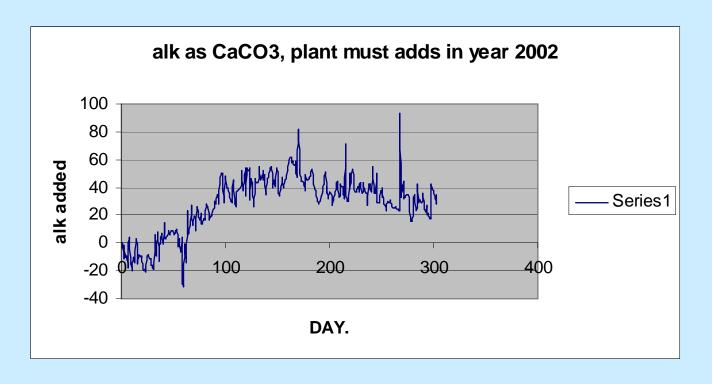
		1. Magne	sium hydroxide	2. Potasiu	ım hydrox	ide	3.Soda as	h		4.Hydrate	d lime		5.NaOH		
	much less	harzard to	handle when	hazard as	NaOH								require a l	ot of safety	measures
safety	compared with NaOH and KOH											for safe ha	andling and	storage	
													more harz	ardous thai	n lime
cost	comparati	vely high		weight 40%	% greater t	han NaOH	2 times as	much as I	lime to change	less expe	nsive than o	other	more expe	ensive than	lime
	required th	ne installation	on of an entirely new	so 40% m	ore KOH i	s required to provide	the same a	alkalinity		chemicals	considered	t	cost is variable		
	chemical t	feed facility		the same a	alkalinity a	djustment	high chemi	ical cost c	ompared to lime						
				same price	e as NaOH										
store and	easy to sh	nip and stor	e but	can be sto	re and fed	from the existing	installation	of a new of	chemical storage	difficult an	d maintena	nce-intensive	easier to r	naintain tha	an lime
maintenance	can form deposite in pipelines and valves,			NaOH faci	lities		and feed system would be required		to handle			facilities			
	increasing maintenance requirments						must be stored and pumped at temperature greater than 100 F								
	and costs	,					have noten	tial of foam	ning due to						
							generation		_						
effect to proces	SS									provide a	divalent cati	on may be	MAY nega	atively impa	ct sludge
										beneficial	in terms of	sludge	settleabilit	y and dewa	atering
										settleabilit	У				
										and dewat	ering				
PH	maximum	ph 9.5		strong bas	e ph.>13.5		the range of	of 11		range 12.0)		>=13.5		

chemical substance	safety	cost	store and maintenance	effect to process
1. Magnesium hydroxide	3	3	2	1
2. Potasium hydroxide	1	1	5	1
3.Soda ash	4	3	2	2
4.Hydrated lime	4	5	1	5
5.NaOH	1	2	5	3

However, to make this rate more meaningful, the administrator and their experienced team have to rate the different levels in the scale, indicating how much each level is worth relative to other levels.

weight for each attribute	0.2	0.3	0.3	0.2
chemical substance	safety	cost	store and maintena nce	effect to process
1. Magnesium hydroxide	50	60	20	O
2. Potasium hydroxide	О	O	100	О
3.Soda ash	70	60	20	30
4.Hydrated lime	70	100	0	100
5.NaOH	0	30	100	50

Over all Score for each che	mical	
1. Magnesium hydroxide	34	
2. Potasium hydroxide	30	
3.Soda ash	44	
4.Hydrated lime	64	
5.NaOH	49	

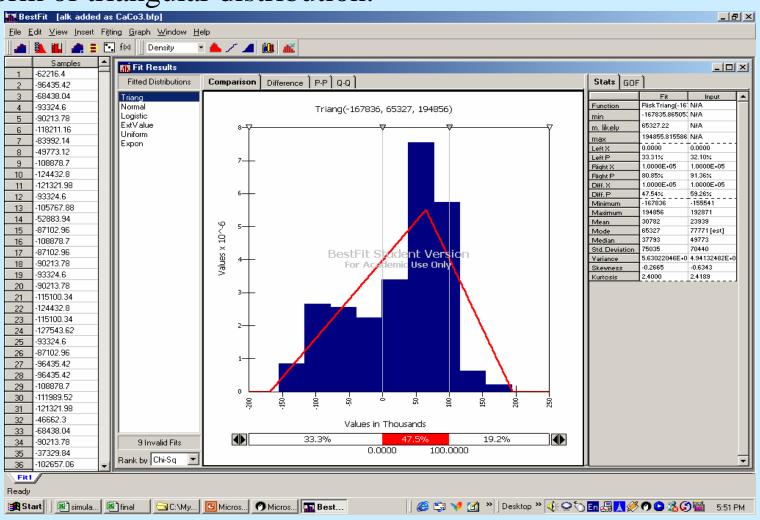

- 1. Operate only the existing NaOH facility
- 2. Construct the smaller Lime facility and continually operate NaOH facility, "Combined facilities"

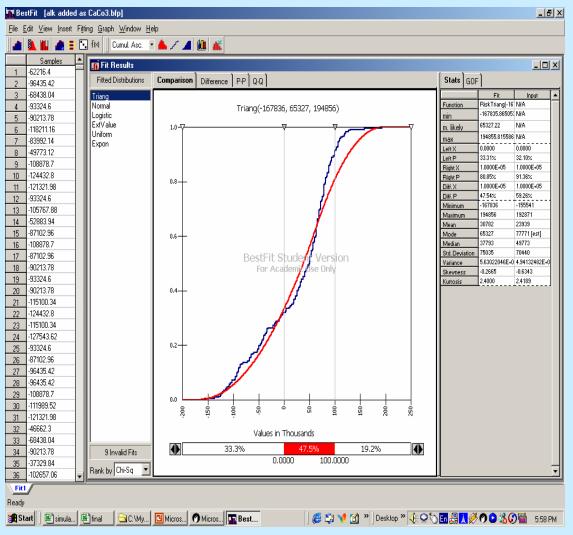
- •For the two chemicals we selected, Lime and NaOH, a more detailed evaluation war performed.
- •We evaluate in terms of the capital, operating, and maintenance costs on the twenty years life cycle basis
- •Since the existing sodium hydroxide facilities are new (2001), in good operational order, and have sufficient volume to store sodium hydroxide more than 10 days of average, facilities will not require any capital improvement

- •Compared to Lime facility, the current condition of facilities is out of date, we needs to pay substantial capital for a new facility. Also, using lime facilities to satisfy the alkalanity demand will require a large lime facilities, which would be used infrequently.
- •Therefore, using only lime to satisfy the alkalinity demand will not be financially advantage.

- •Another alternative will be considered. The lime facilities will be sized to handle the alkalinity demand that the plant need during a year and the existing sodium hydroxide facilities will be used to satisfy additional demand
- •Therefore, we have two alternatives for making decision
- 1. Operate only NaOH facility
- 2. Construct smaller Lime facility and continue using NaOH facility. We will call "Combined facility"

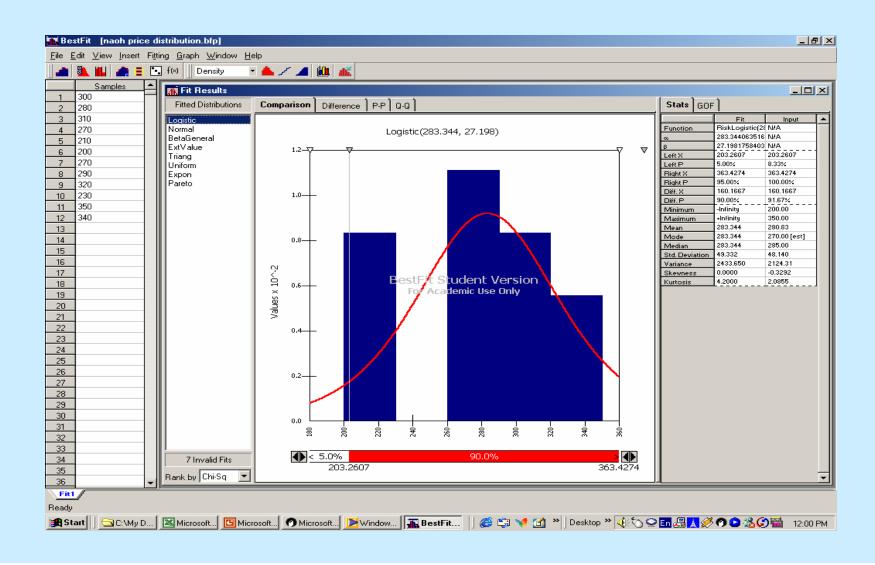
From the history data, Jan-Oct year 2002, the alkalinity as CaCO3 we need to add to wastewater to maintain the standard alkalinity in wastewater, 80 mg/l is shown below




- lbs/day as CaCO3= MGD X 8.34 X mg/l CaCO3
- Avg. plant influent=373 million gallon per day

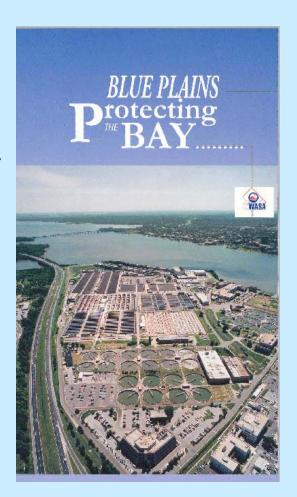
The effluent from the dentirification demonstration process into the Potomac River not only met year-round mitrogen goals, but met all other permit parameters.

From Bestfit, the distribution of additional alkalinity is in the form of triangular distribution.

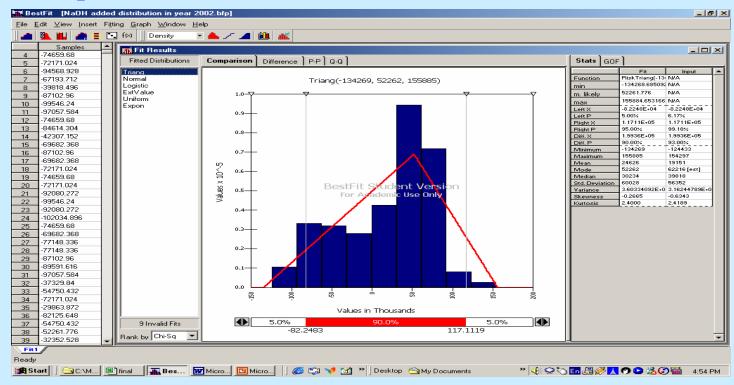


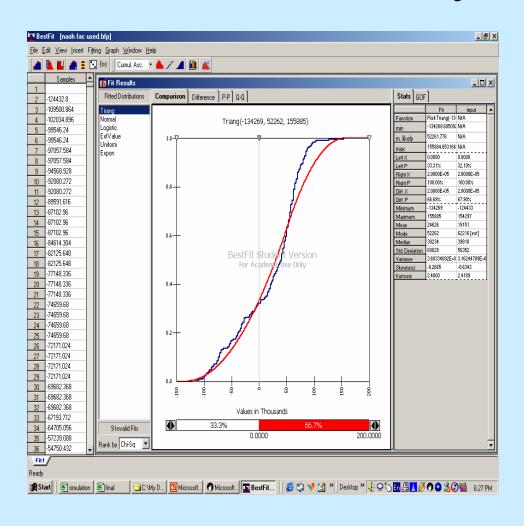
- From cdf, 33% of the year we don't need to add alkalinity
- 66.67% of the year we need to add from
- 0-192871 lbs/day as CaCO3.

Cost of chemical


- Lime cost is around \$70-\$72/ ton, which does not fluctuate much compared to NaOH.
- NaOH price is varied from \$0.20-\$0.35/kg, based on the historical data we do contract with contractor.

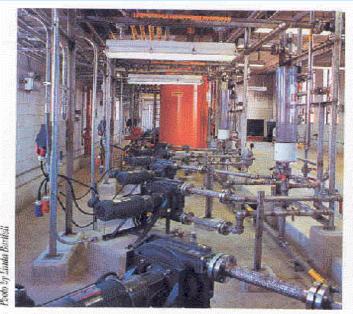
Cost of chemical



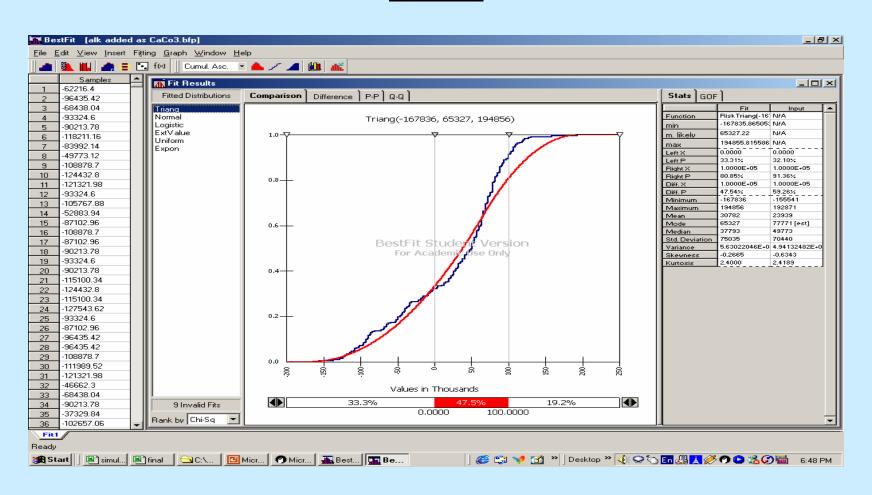

Find overall cost

- NaOH only alternative
- Combined facility alternative

• The amount of NaOH used in this facility can calculate by lbs/day as NaOH = lbs/day as CaCO3 X eq.wt. NaOH (40)/eq.wt. CaCO3(50)



We add NaOH66.67% of year


Amount of NaOH used per day						
	lbs/day	ton/day				
most likely	19151	8.675403				
max	154297	69.896541				
min	0	0				
naoh used(lbs/day)	naoh used(t0n)	%naoh used	naoh price(ton)	naoh cost		
19151	8.675403	0.6667	320	675558.5		
1.cost of continued use of the NaOH facility						
cost component	type of cost	cost	present worth 3%*20years		max	min
capital cost	single	-	-			
amount of NaOH used(ton/day)		8.67			69.89	0
price of NaOH(Price/dry ton)		320.00			320	256
annual operation cost for NaOH facilities	annuity	23,432.00	348,609.00	fixed cost	383,469.90	313,748.10
annual maintenance cost for NaOH facilities	annuity	13,320.00	198,168.00	fixed cost	217,984.80	178,351.20
cost of NaOH facility for 20 years	14,049,532.10					

• We estimate the cost of operating NaOH facility equaled to \$14000000

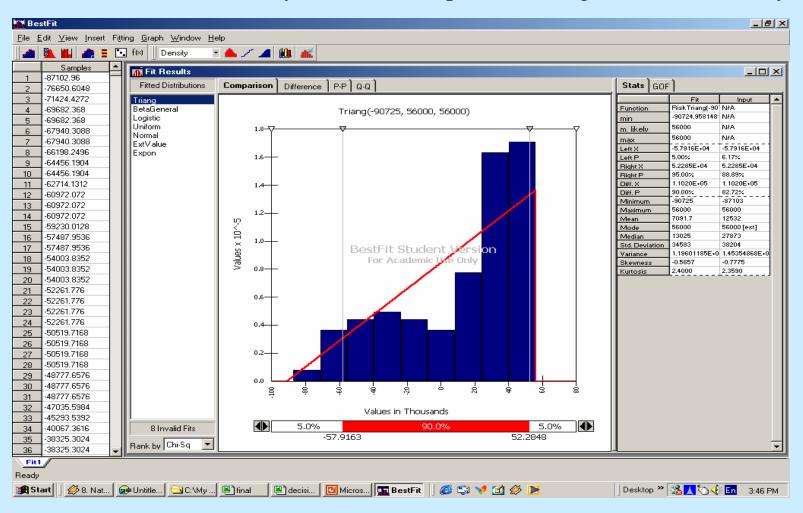
ode for Finds Rivell

Construct small lime facility and continue using the existing NaOH facilities

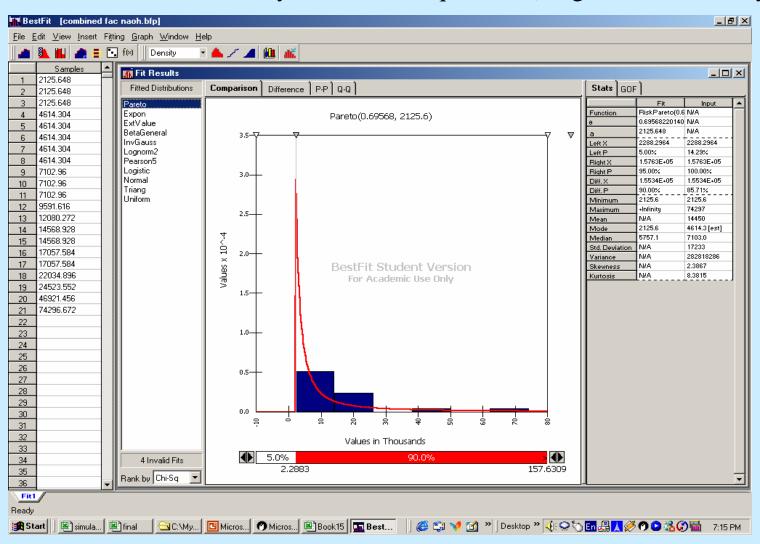
Construct small lime facility and continue using the existing NaOH facilities

From the cdf graph of alk added as CaCO3 year 2002 we can see that

- 1).33.3% of year we don't need to add any alkalinity
- 2).47.5% of year we added alkalinity as CaCO3 from 0-100,000 lbs/day
- 3).19.2% of year we added alkalinity as CaCO3 from 100000-194856 lbs/day


Therefore we decide another alternative for this problem, That is we creat a smaller lime facility by sizing the new lime facility that meets

• the 66.67%(47.5%+19.2%) alkalinity as CaCO3 requirement(0-100000lbs/day) and then use the existing NaOH facility when


the alkalinity requirment is over the capacity of this lime facility. That is 19.2% of year.(100000-194856lbs/day)

We call this alternative "combined facility"

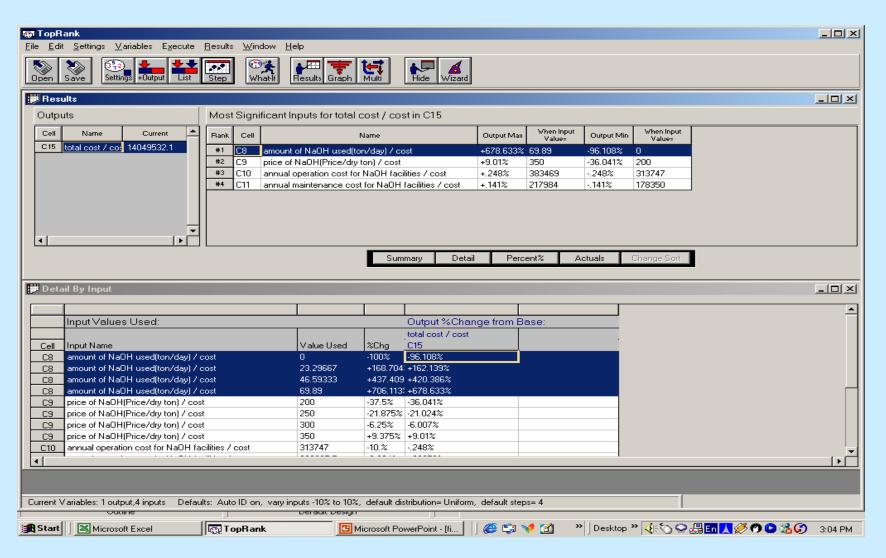
Lime added for alkalinity as CaCO3 requirment(range 0-100000lbs/day)

NaOH added for alkalinity as CaCO3 requirment(range>100000lbs/day)

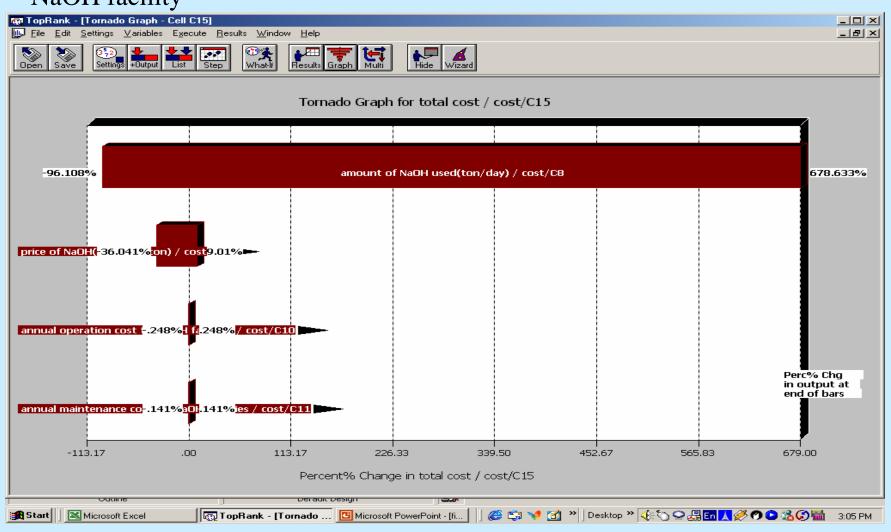
			lbs/day	tons/day			
Lime		most likely	12532	5.676996	mean=	5.676996	ton/day
		max	56000	25.368			
		min	0	0			
			•	'			
From lime used distributio	n						
	lime added	66.67					
	lime added<=0	33.33%					
	cost	\$72/ton					
		lbs/day	tons/day				
NaOH	mean	14450	6.54585	\$320/ton	mean=	6.54585	ton/day
	max	74297	33.656541	*			
	min	2125.6	0.9628968				
			0.002000				
From NaOH used distribut	ion						
	NaOH used	19.20%	c as CaCO3>=100000 lbs/d	av)			
	cost	\$320/ton		<i></i>			
	0001	φο_ο/το					
1year use=66.67% x 365	∨ 5 67 v 72 ± 10 2	20% v 365 v	v 6 55 v 320				
=	246231.0469	.070 X 303 /	0.00 x 320				
_	240201.0409						
lime cost	99343.36692						
naoh cost	146887.68						
naon oost	140007.00						
naoh cost-lime cost	47544.31308						
Hadii cost-iiiie cost	47344.31300						

lime used(lbs/day)	lime used(t0n)	%lime used	lime price(ton)	lime cost					
12532	5.676996	0.6667	72	99465.94297					
naoh used	naoh used(t0n)	%naoh used	naoh price	naoh cost					
14450	6.54585	0.192	320	146794.6138					
combined cost									
246260.5567									
sensitity analysis	for combined facility								
	cost component		type of cost	cost	present worth 3%		max	min	
demolition costs			single	1220000	1220000	fixed cost	-	-	
capital cost for con-	strucition of new package		single	394000	394000	fixed cost	401880	394000	
amount of lime(ton/	'day)		-	5.67			25.368	0	
price of lime (cost p	per ton)			70			72	70	
annual operation co	st for lime facilities		annuity	17453	259654	fixed cost	285619.4	233688.6	
annual maintenance	e cost for lime facilities		annuity	22503	334786	fixed cost	368264.6	301307.4	
annual cleaning grid	d removal cost		annuity	66150	984145	fixed cost	-	-	
amount of NaOH				6.54			33.66	0.96	
price of NaOH				320			320	256	
annual operation co	st for NaOH facilities		annuity	17107	254507	fixed cost	279957.7	229056.3	
annual maintenance	e cost for NaOH facilities		annuity	23304	346705	fixed cost	381375.5	312034.5	
slaker overhaul(after	er 10 years)		single	40000	40000	fixed cost	-	-	
	Manufacturing cost in 20 y	ears ears	8698742.059						

• We estimate the cost of operating Combined facility that equals to \$8.6million

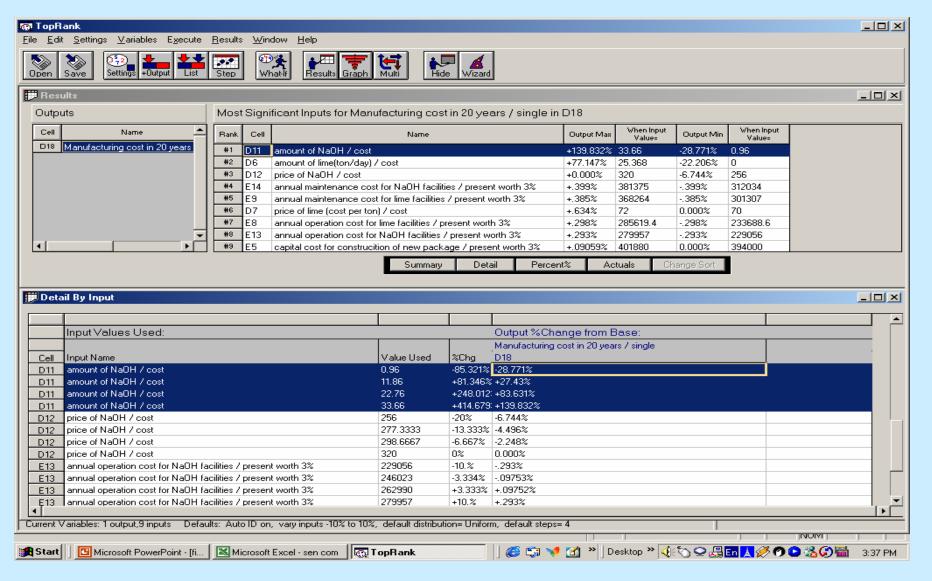


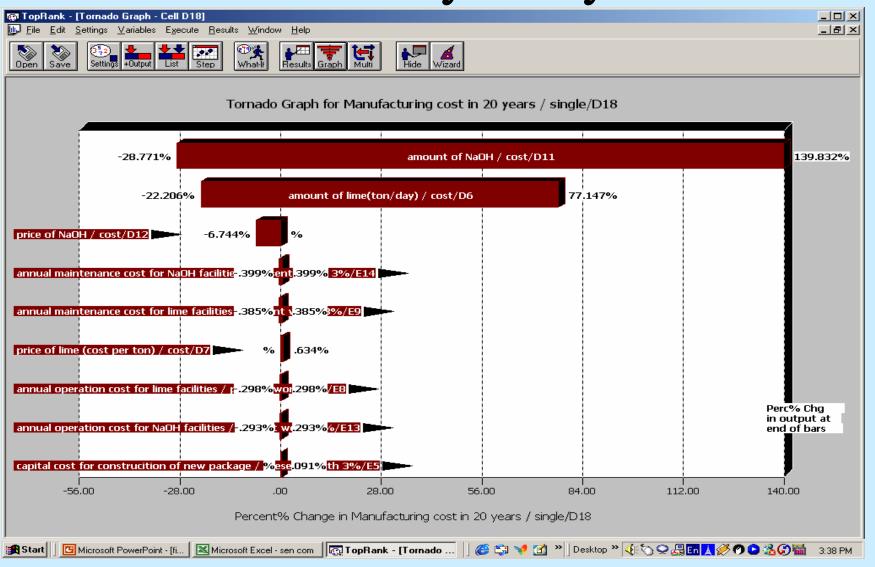
Sensitivity analysis


NaOH facility

Sensitivit	y analysis NaOH facility				
	1.cost of continued use of the NaOH facility				
	cost component	cost	max	min	
	amount of NaOH used(ton/day)	8.67	69.89	0	
	price of NaOH(Price/dry ton)	320	350	200	
	annual operation cost for NaOH facilities	348609	383469.4	313747.7	
	annual maintenance cost for NaOH facilities	198168	217984.3	178350.8	

NaOH facility


NaOH facility



Combined facility

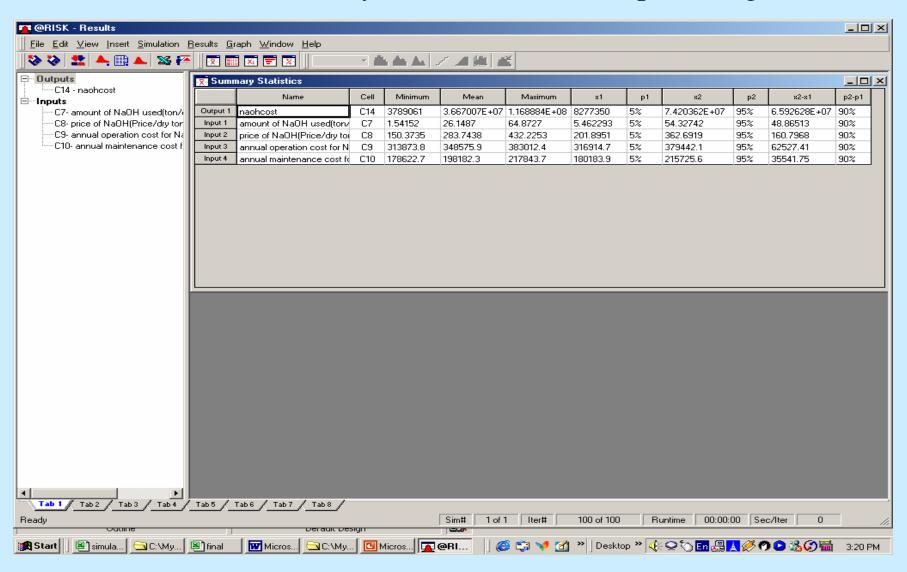
sensitity analysis for combined facility					
cost component	cost	present worth 3%	max	min	
demolition costs	1220000	1220000	-	-	
capital cost for construcition of new package	394000	394000	401880	394000	
amount of lime(ton/day)	5.67		25.368	0	
price of lime (cost per ton)	70		72	70	
annual operation cost for lime facilities	17453	259654	285619.4	233688.6	
annual maintenance cost for lime facilities	22503	334786	368264.6	301307.4	
annual cleaning grid removal cost	66150	984145		-	
amount of NaOH	6.54		33.66	0.96	
price of NaOH	320		320	256	
annual operation cost for NaOH facilities	17107	254507	279957.7	229056.3	
annual maintenance cost for NaOH facilities	23304	346705	381375.5	312034.5	
slaker overhaul(after 10 years)	40000	40000	-	-	

Combined facility

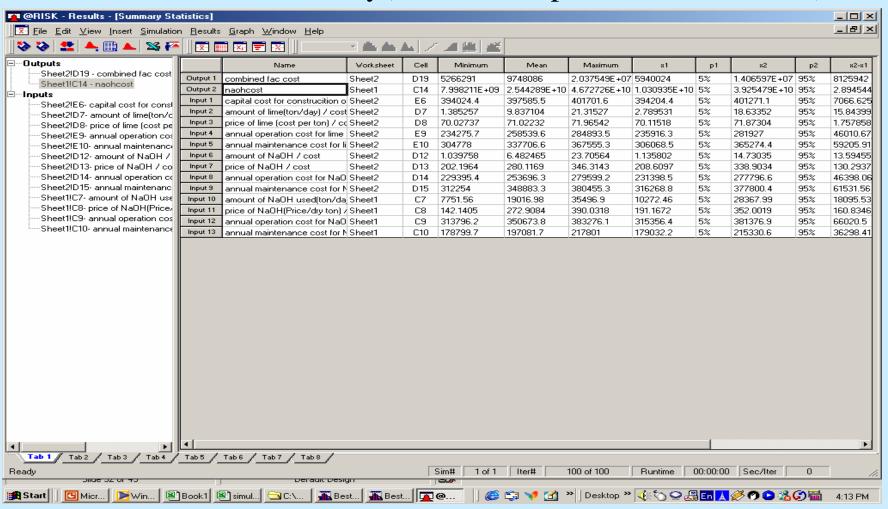
Sensitivity analysis(summary)

- NaOH facility
- Most significant input
 - 1.amount of NaOH when input maximum,
 69.89 tons
 - 2.price NaOH when input maximum
 - 3.annual operation cost
 - 4.annual maintenance cost

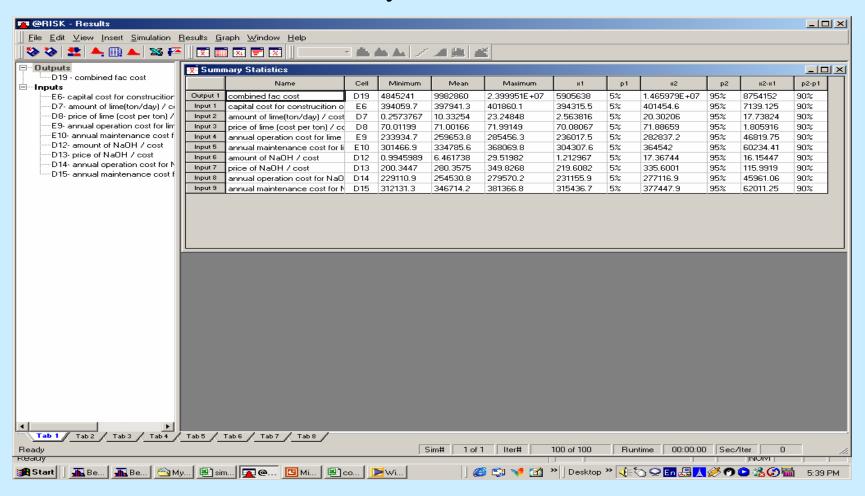
Sensitivity analysis(summary)

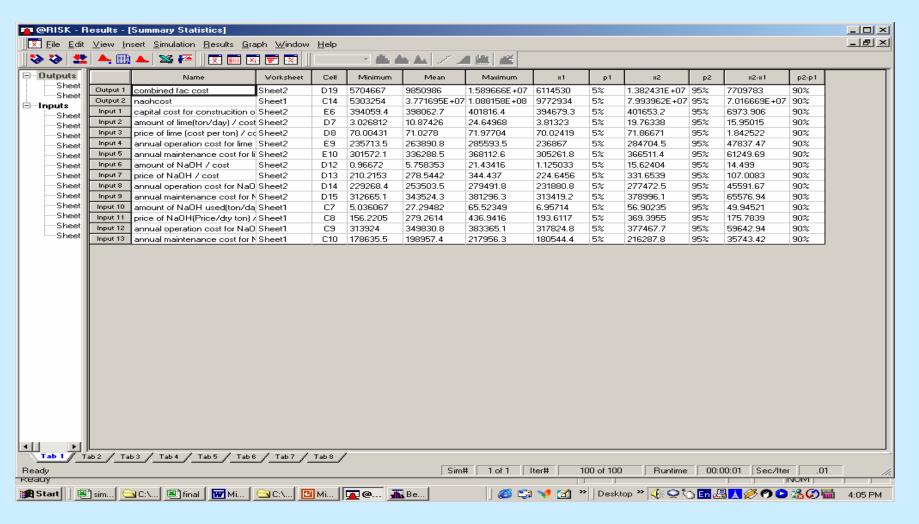

- Combined facility
- Most significant input
 - 1.amount of NaOH when input 33.66 tons(maximum)
 - 2.amount of Lime (maximum)
 - 3.price NaOH
 - 4.annual maintenance cost NaOH
 - 5.annual maintenance cost Lime
 - 6.price of lime

Simulation NaOH facility


input amount NaOH added-triangular
-max 69.89, min 0, most likely 8.67
input price of NaOH-logistic
-alpha 283.34, beta 27.198

input operation cost-uniform
-max 383469, min 313747
input maintenance cost-uniform
-max 217984, min 178350


Simulation NaOH facility(amount NaOH=tri, price=logistic)


Simulation NaOH facility(amount and price NaOH=normal)

Simulation Combined facility

Simulation Combined facility

Simulation summary

NaOH facility		mean	max	95%	
NaOII lacility	amount NaOH=triangular	35	98	73	
	price=logistic	33	30	7.5	
	price=logistic				
	amount NaOH=normal				
	price=normal	12	21	18	
	amount NaOH=normal	12	26	18	
	price=logistic				
	amount NaOH=triangular	36	102	77	
	price=normal				
Combined facility		mean	max	95%	
	amount of lime=tri	9.9	23	14	
	amount NaOH=exponential				
	price=logistic				
	amagunt of line a manner	0.4	20	40	
	amount of lime=normal	8.4	28	18	
	amount NaOH=exponential				
	price=logistic				
	amount of lime=normal	8.4	24	19	
	amount NaOH=exponential				

Simulation summary

• By changing different distributions to the significant inputs, the result shows that operating the second alternative, "combined facility", is more benefitial than operating only NaOH facility.

Project summary

- We choose the alternative two, "combined facility". Even though we have to pay a capital for building a new lime facility, we can get more benefit from this alternative when we consider about long-run profit(20 years).
- However, running these facilities we have to focus on amount of NaOH, amount of Lime, and price of NaOH respectively, according to sensitivity analysis.

Future work

- Knowing the price of NaOH in the past 3 years, we can find the forecasting method and forecast for the budget plan in the future.
- We haven't included the safety issue in this problem and it may effect the decision even the operator in these facility are about 20 persons.

Future work

- We can search for the possibility that these operators may be sick, quit for their job according to the health problem, and cost of training new operator.
- However, right now DCWASA already decide to construct a new lime facility according to the cost benefit and there is some belief that the lime also improve the settling of wastewater.