Residential Photovoltaic Arrays

Matt Kane ENCE 627 Fall 2002 Semester Project Dec 3, 2002

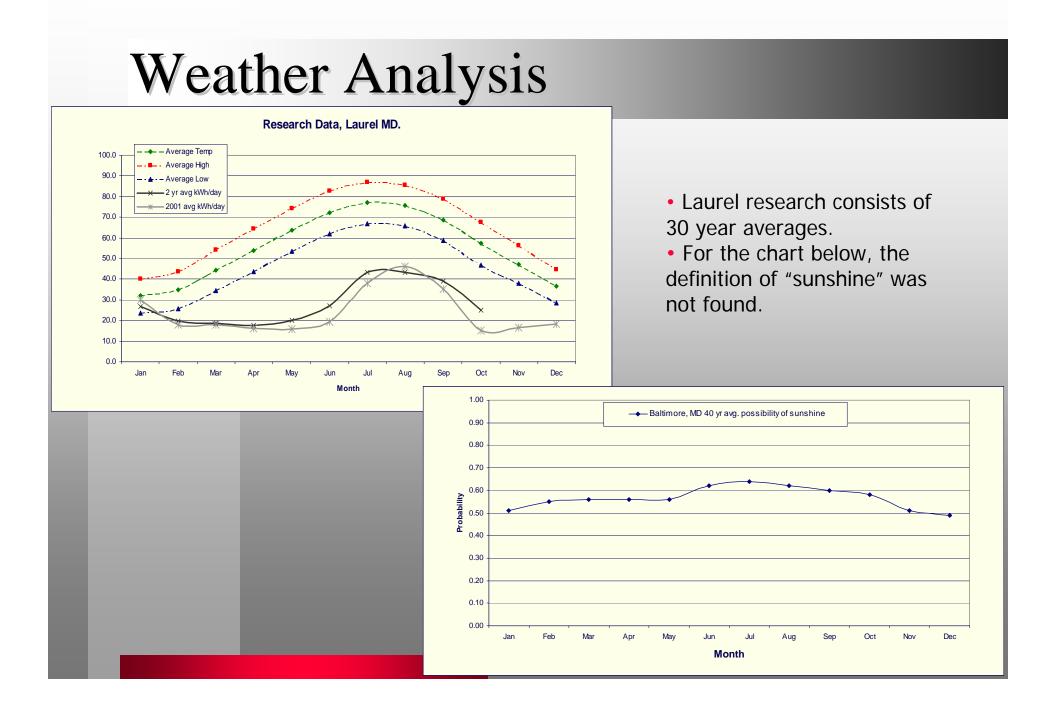
Project Objectives

Minimize Payback Period

 Least Expensive Array
 Aesthetics a concern

 Maximize Power Output

 Limited Roof Area
 Roof Orientation a concern


Site Description

- 2 Story Colonial Built in 1999.
- Approximately 1,990 square feet.
 - About 566 sq. ft. of usable roof area.
- Average electricity consumption 13,800 kWh/year.
- US 1997 average electrical consumption per household was 10,215 kWh/yr.

Site Description

- Roof area faces west lots of afternoon sun. Not ideal, but still acceptable due to lack of shading.
- Electricity consumption correlates with available solar energy.

Array Competitive Analysis

- Array must be integrated into roof.
 - Community association covenants
 - Lack of suitable yard area
- Aesthetically pleasing
 - Low visual impact
- All PV arrays are expensive at this time.

FOR MORE INFO...

- <u>https://www.altenergystore.com/cart/1130?cQdmRWjo;</u>
- http://www.cetsolar.com/architecturalssp.htm

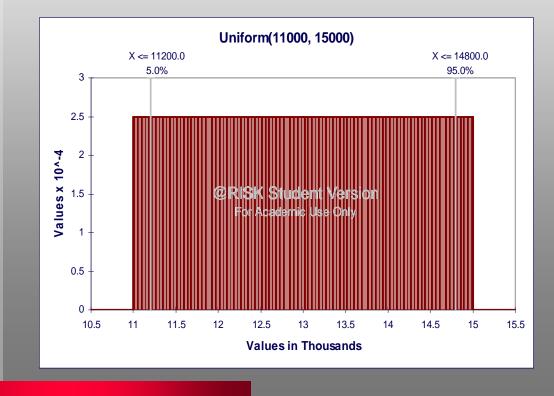
Array Competitive Analysis

- Raised Seam Roofing
- Cheapest per watt in terms of materials and labor.
- May not be pleasing due to industrial appearance.
- Comes in 64 or 128 watt sizes.

A 1.5 kW DC system was installed on a National Association of Home Builders (NAHB) 21st Century Townhouse in Maryland. The 18-panel system is grid connected. It has a 16-kWh battery backup

Array Competitive Analysis

- Shingle type arrays
 - Larger capacity array per area
- More expensive
 - More modules
 - More labor because of additional roof penetrations and wiring issues.


A 2.0 kilowatt DC grid-connected system operating at the Southface Energy & Environmental Resource Center in Atlanta, Georgia. The grid-connected system is configured at 48 volts DC using a 4,000 watt inverter.

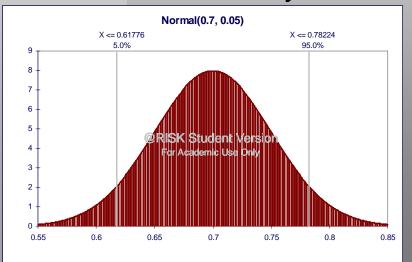
Four major categories

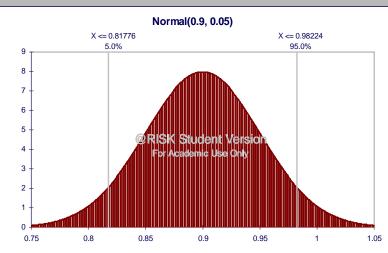
- Installation and materials costs
- Power generated (reduced monthly bills)
- Electricity Rates
- Interest Rates

Installation and materials cost

 Called local installers to get a feel for pricing. Decided a uniform distribution between \$11,000 and \$15,000 per kW capacity adequately represented potential installation costs.

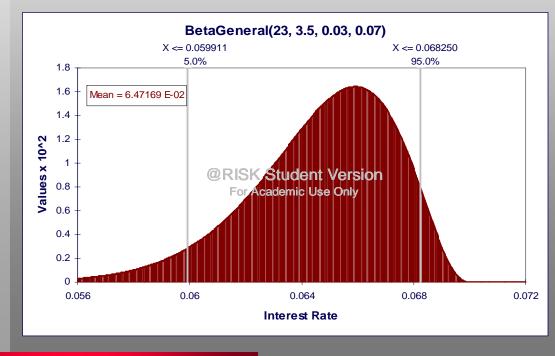
• Power Generated


 Used Department of Energy's web application "PV WATTS" to estimate electrical power generated by arrays of different sizes.


Cell ID:	26337	
State:		
Latitude:	39.1 ° N	
Longitude:	76.9 ° W	
AC Rating	4.00 kW	
PV System Specification		
Array Type		
Апау туре		
Array Type Array Tilt:	36.9 °	
	36.9 ° 270.0 °	
Array Tilt: Array Azimuth:	270.0 °	
Array Tilt:	270.0 °	

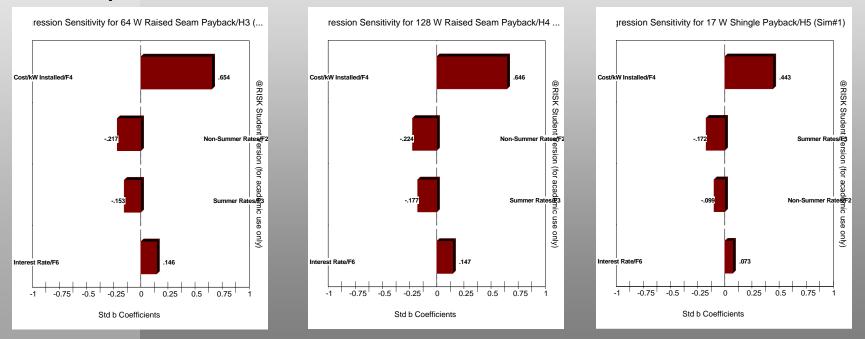
Month	Energy	Energy Value
	(kWh)	(\$)
1	228	\$ 15.75
2	271	\$ 18.72
3	461	\$ 31.85
4	507	\$ 35.03
5	580	\$ 40.08
6	583	\$50.76
7	585	\$50.93
8	512	\$44.58
9	434	\$37.79
10	355	\$ 24.53
11	226	\$ 15.62
12	194	\$ 13.40
Year	4936	\$ 379.04

• Electricity Rates


- I collected 23 months of data for my house.
- Non Summer rates averaged about \$0.07/kWh
- Summer Rates averaged around \$0.09/kWh
- I decided a uniform distribution for each rate with a mean as above and a standard deviation of 0.05 best represented my uncertainty about the electricity rates.

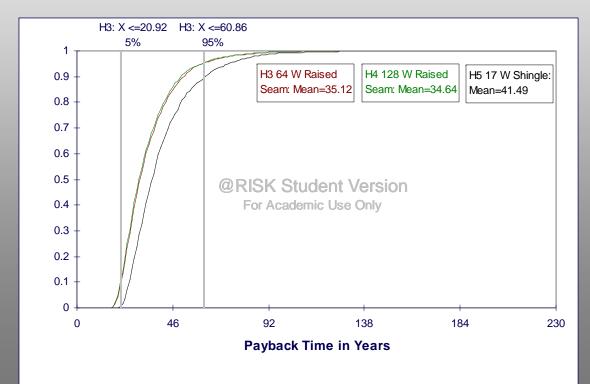
Interest Rates

- The project would have to be financed.
- Interest rates are currently very low.
- I felt that interest rates are more likely to rise than they are to fall. I chose a beta distribution to represent my uncertainty about future interest rates.


Simulation

- Used @RISK to perform Monte Carlo simulation.
 - 4 different array sizes were evaluated up to 3.3 kW.
 - 5000 iterations were performed to get good convergence.
- @RISK Inputs
 - Non Summer Rates
 - Summer Rates
 - Cost/kW Installed
 - Installed Capacity
 - Interest Rate
- Also calculated array cost and payback period (Present Value).
 - Payback Equation: PV=R*{[(1+i)ⁿ-1]/[i*(1+i)ⁿ]} where PV is the present value cost of the array, R is the regular payments made, i is the annual interest rate (compounded annually), and n is the number of years it takes to pay the loan.

Simulation


• Performed Sensitivity Analysis.

 In all cases, Cost/kW installed was the greatest impact on the payback period.

Simulation

- Checked for Dominance.
 - The 128 W raised seam units dominates the simulation, as the payback period is lowest by a small margin.
 - Payback period remains the same within a specific unit regardless of the capacity installed.

Conclusions and Strategy

- Despite increasing popularity in some applications and improved manufacturing techniques, PV arrays are still VERY expensive.
- Installation costs for the homeowner are prohibitively high.
- Interest rates are not likely to drop any further.

Conclusions and Strategy

- Payback periods are on the order of a mortgage loan (15-30 years).
- Electricity costs are reasonable.
- PV is NOT a cost effective alternative in for the average DC Metro area homeowner.