Backcalculation Analysis of Pavement-layer Moduli Using Pattern Search Algorithms

Project Report for ENCE 724

Feiquan Luo May 17, 2005

Backcalculation Analysis of Pavement-layer Moduli Using Pattern Search Algorithms

- 1. Introduction
- 2. Overview of the Project
- 3. Objective of the Project
- 4. Pavement Model
- 5. Optimization Model
- 6. Implementation
- 7. Conclusion
- 8. Potential Limitation and Future Research

1. Introduction

• Evaluation of existing in-service pavement is important in determination of pavement construction quality and assessment of rehabilitation needs.

two possible methods for evaluating the pavement:
 (1)lab testing

- (2)nondestructive testing (NDT)
 - falling weight deflectometer (FWD)

2. Overview of the Project Typical Flexible Pavement Structure

Asphalt Concrete

Base

Subbase/Subgrade

2. Overview of the Project Falling Weight Deflectometer(FWD) Test

Schematic of Deflection Basin, and Loading, Sensors Configuration

3. Objective of the Project

 To develop an effective method to backcalculate the layer moduli of pavement from the FWD deflection data.

4. Pavement Model Basic Model

4. Pavement Model Governing Equation

$$(c_d^2 - c_s^2)\frac{\partial\Delta}{\partial r} + c_s^2 \left(\nabla^2 u - \frac{u}{r^2}\right) - \ddot{u} = 0 \qquad (c_d^2 - c_s^2)\frac{\partial\Delta}{\partial z} + c_s^2 \nabla^2 w - \ddot{w} = 0$$

- Where u = u(r, z, t) : displacements of the *i* th layer along the r;
- w = w(r, z, t): displacements of the *i* th layer *z* direction;
- dots indicate differentiation with respect to time *t*;
- *c*_d : dilatational wave velocity
- c_s : shear wave velocity $\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial \tau^2}$

$$\Delta = \frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z}$$

4. Pavement Model **Solution for Multiple layer Model with** Rock bed. _____

$$u(r,Z,t) = \frac{1}{2\pi i} \int_{\alpha-i\infty}^{\alpha+i\infty} \int_0^{\infty} \xi J_1(\xi r) [\psi_1(Z)] [\overline{\tilde{\tau}}_{rz}(h_1), \overline{\tilde{\sigma}}_z(h_1)]^T d\xi e^{qt} dq$$

Where u^c is calculated displacement, u^m measured displacement, E_i the modulus for *i* th layer, E_i^{l} the lower bound of modulus for *i* th layer, and E_i^{u} the upper bound of modulus for *i* th layer.

5. Optimization Model Model 2 (mathematical model)

Displacement vs time

Min
$$\sum_{n=0}^{k} \left(\int_{t_{n}}^{t_{n+1}} \frac{u^{c} (E_{1}, E_{2}, E_{3}, t) - u^{m} (t)}{u^{m} (t)} dt \right)^{2}$$

s.t. $E_{i}^{l} \leq E_{i} \leq E_{i}^{u}$ i=1,2,3

5. Optimization Model Model 3 (discretized model)

Displacement

Displacement vs time

Min
$$\sum_{n=0}^{N} \left(\int_{t_n}^{t_{n+1}} \frac{u^c (E_1, E_2, E_3, t) - u^m (t)}{u^m (t)} dt \right)$$

S.t. $E_i^{l} \le E_i \le E_i^{u}$ i=1,2,3
N>>k. $(t_{n+1}^{-1} - t_n)$ is constant.

5. Optimization Model Model 4 (practical model)

Displacement

Displacement vs time

Min
$$\sum_{n=0}^{N} \left(\frac{u^{c}(E_{1}, E_{2}, E_{3}, t) - u^{m}(t)}{u^{m}(t)} \Delta t \right)^{2}$$

s.t. $E_{i}^{l} \leq E_{i} \leq E_{i}^{u}$ i=1,2,3
where $\Delta t = t_{n=1} - t_{n}$ is a constant.

6. Implementation Problem Statement

$$\operatorname{Min} \quad \sum_{n=0}^{N} \left(\frac{u^{c}(E_{1}, E_{2}, E_{3}, t_{n}) - u^{m}(t_{n})}{u^{m}(t_{n})} \Delta t \right)^{2}$$

s.t. $E_i^l \le E_i \le E_i^u$ i=1,2,3

.

Where $u^{c}(E_{1}, E_{2}, E_{3}, t) = \frac{1}{2\pi i} \int_{\alpha - i\infty}^{\alpha + i\infty} \int_{0}^{\infty} \xi J_{1}(\xi r) [\psi_{1}(Z)] [\overline{\tilde{\tau}}_{rz}(h_{1}), \overline{\tilde{\sigma}}_{z}(h_{1})]^{T} d\xi e^{qt} dq$

6. Implementation Pattern Search Algorithm

• As we can see, the objective function is very complicated, and its gradient is not available. Direct search is a method for solving optimization problems that does not require any information about the gradient of the objective function. A special direct search method, pattern search algorithm is selected to solve the problem.

• Genetic Algorithm and Direct Search Toolbox in Matlab, is adopted to perform the optimization

Flow Chart of Optimization Process

6. Implementation Optimization Result

• Start point $(E_1^0, E_2^0, E_3^0) = (4.6200e+009)$ 4.0270e+009 2.1240e+009)

• Optimal point $(E_1^*, E_2^*, E_3^*)_= (6.9871e+009$ 7.4255e+009 5.4802e+009)

• Optimal objective function $(\varepsilon^2)^* = 4.9432e - 011$.

7. Conclusion

- Using time history of pavement responses to determine layer moduli leads to more precise outcome.
- Pattern search algorithm is proved to be valid and effective in backcalculation of pavement layer moduli.

8. Potential Limitation and Future Research

- The verification of the backcalculation using pattern search algorithm is not available in this project.
- In future research, several locations should be considered, and the weights allocated to different locations is to be studied.

