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• Degrees of Channel State Information at the transmitter:

-Perfect CSI (unpractical )

-Mean Feedback (applications with low mobility)

-Covariance Feedback (applications that involve mobile

transmitters and/or receivers)

• The channel model that is widely used: Flat Fading Sce-

nario which models narrowband applications (Speech)

• Frequency Selective Fading: Models broadband applica-

tions (high data rate, multimedia applications , and oth-

ers) Only Perfect CSI: (Cioffi et. al., SP 03) and Mean

Feedback: (Giannakis et. al., SP 04)



System Model 4

• MIMO-OFDM frequency selective fading channel model

with Mt transmit antennas and Mr receive antennas.

• The channel impulse response from transmit antenna i to

receive antenna j at any time instant τ can be modeled

as

hij (τ) =
L−1∑

l=0

αij (l) δ (τ − τl) , (1)

• The received signal at the n-th subcarrier at receive an-

tenna j is given by

yj (n) =

√
ρ

Mt
hT

j (n)b (n) + vj (n) , (2)
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• In general, the design of the SF-beamformer symbol B is

split into two parts B = WC.

• A predesigned SF codeword C

• A beamformer (linear transformation) W which is an Mt×
Mt matrix

• We seek the beamformer design W !!!
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• Objective: Minimize the average pairwise error probability

Pr(B → B̃) (3)

• We can prove that the average pairwise error probability

can be upper bounded by

PEP ≤
[
det

(
ρ

4Mt
R̃H

(
INMr ⊗

[
(IN ⊗W)∆

(
IN ⊗WH

)])
R̃ + Ir

)]−1

,

(4)

• Where R̃ is the square root matrix of the channel corre-

lation matrix Rh = E
{
hhH

}

Rh = R̃R̃H (5)
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• We can state the optimization problem as follows

max
W

f(W) = det

(
ρ

4Mt
R̃H

(
INMr ⊗

[
(IN ⊗W)∆

(
IN ⊗WH

)])
R̃

+Ir)

s.t. || W ||2F= 1.

(6)

• Is it convex? (Hopefully!)

• ∆ is a positive semi-definite Hermitian matrix that de-

pends on the SF code design

• Relaxation: Assume the matrix ∆ to be identity!
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• The optimization problem then reduces to

max
W

f(W) = det

(
ρ

4Mt
R̃H

(
INMr ⊗

[
(IN ⊗W)

(
IN ⊗WH

)])
R̃ + Ir

)

s.t. || W ||2F= 1.

(7)

• Define η = WWH.

Matrix identity (IN ⊗A)(IN ⊗AH) = IN ⊗ (AAH)

• The optimization problem can be rewritten as follows

max
η

g(η) = det

(
ρ

4Mt
R̃H

(
INMr ⊗ (IN ⊗ η)

)
R̃ + Ir

)

s.t. tr(η) = 1,

η = ηH ≥ 0.

(8)
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• Using the matrix identity IN ⊗ (IM ⊗A) = INM ⊗A

• The objective function can be finally written as

max
η

g(η) = det

(
ρ

4Mt
R̃H

(
IN2Mr

⊗ η
)
R̃ + Ir

)

s.t. tr(η) = 1,

η = ηH ≥ 0.

(9)

• First we study the convexity of the feasible region
Let η = λη1 + (1− λ)η2, where λ ∈ (0,1)

• Then we have

tr(η) =tr(λη1 + (1− λ)η2) = λtr(η1) + (1− λ)tr(η2)

= λ + (1− λ) = 1.

(10)
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• Substituting η = λη1 + (1− λ)η2 in g(η)

g(η) =det

(
ρ

4Mt
R̃H

(
IN2Mr

⊗ (λη1 + (1− λ)η2)
)

×R̃ + Ir

)

det

(
λ

ρ

4Mt
R̃H

(
IN2Mr

⊗ η1

)
R̃ + (1− λ)

ρ

4Mt
R̃H

(
IN2Mr

⊗ η2

)
R̃ + Ir

)
.

(11)

• Corollary (Matrix Analysis) For any positive definite

matrices A and B and λ ∈ (0,1), the following is true

det [λA + (1− λ)B] ≥ det [A]λ det [B]1−λ . (12)

• Using this corollary, we get

g(η) ≥ g(η1)
λg(η2)

1−λ. (13)
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• Define q(η) = log(g(η)), then the above equation reduces
to

q(η) ≥ λq(η1) + (1− λ)q(η2). (14)

• Therefore q(η) is a concave function!

• Now we can write the optimization problem again as fol-
lows

max
η

q(η) = log

(
det

(
ρ

4Mt
R̃H

(
IN2Mr

⊗ η
)
R̃ + Ir

))

s.t. tr(η) = 1,

η = ηH ≥ 0.

(15)

• This is maximizing a concave function over a convex set
Local optima are global optima !
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• To solve the optimization problem we choose the sequen-

tial quadratic programming (SQP) method.

• Consider solving the following problem

min
x

f(x)

gi(x) = 0, 1 ≤ i ≤ me

gi(x) ≤ 0, me + 1 ≤ i ≤ m,

x ∈ Rn.

(16)

• For a given iteration k, let xk be an approximation to

the solution, λk be an approximation to the multipliers,

and Bk an approximation to the Hessian matrix of the

Lagrangian



• we have to solve the following quadratic programming

problem

min
d

1

2
dTBkd +∇f(xk)

Td

s.t. ∇gi(xk)
td + gi(xk) = 0, 1 ≤ i ≤ me,

∇gi(xk)
td + gi(xk) ≤ 0, me + 1 ≤ i ≤ m,

(17)

• Let dk be the optimal solution of the above subproblem

and µk the corresponding multipliers, then the next iter-

ation is formulated as follows
(xk+1

λk+1

)
=

(xk

λk

)
+ αk

( dk

µk − λk

)
(18)

• SQP is implemented in the Matlab optimization toolbox

by the function ’fmincon’
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• In the simulation experiments, the square root of the

channel covariance matrix was taken to be

R̃H =

[
−0.6918 1.2540 −1.4410 −0.3999 0.8156 1.2902 1.1908 0.8580
−1.5937 0.5711 0.6900 0.7119 0.6686 −1.2025 −0.1567 −0.0198

]
.

(19)

• The matrix η is a 2×2 symmetric matrix, i.e. 3 unknowns.

• The cost function can be simplified as follows

q(η) = log(13.57 ∗ η(1,1)2 − 5.8645 ∗ η(1,2)2 + 9.88 ∗ η(2,2)2 − η(1,1) ∗ η(1,2)

+ 28 ∗ η(1,1) ∗ η(2,1) + 10.75 ∗ η(1,2) ∗ η(2,1) + (4/SNR) ∗ (7.7638 ∗ η(1,2)

+ 0.8572 ∗ η(1,2) + 6.88 ∗ η(2,1) + 1)).
(20)



• We tested the algorithm at more than initial point and

they all gave the same result as follows

xo = [0.5,0,0.5];

xo = [1,0,0];

xo = [0,0,1],

xo = [0.2,0,0].

(21)

The optimal solution at any of the above initial conditions

was

η1(1,1) = 0.3416, η1(1,2) = 0.4742, η1(2,2) = 0.6584.

(22)

• The above answer was at SNR = 100. We changed the

SNR to check the sensitivity of the optimal solution to

changing the SNR.



• We considered SNR = 10 and the results were

η2(1,1) = 0.3614, η2(1,2) = 0.4804, η2(2,2) = 0.6386.

(23)

• Thus the optimal solution is not sensitive to the variations

in the SNR.

• Although this phenomenon was only checked for this spe-

cific example, it is intuitive to generalize it.
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• We studied the problem of optimal transmitter design in

the presence of partial channel state information

• We formulated the problem as a non-linear optimization

problem where the objective function is an upper-bound

on the system pairwise error probability and the con-

straints are on the system energy

• Under a relaxation on the objective function, we prove

that the optimization problem is convex

• We utilize the sequential quadratic programming methods

to solve the problem

• Future Work


