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Introduction

First Scatterer

Cluster

X

Second Scatterer
Cluster

Different Scatterers are independent.



Motivation

e Degrees of Channel State Information at the transmitter:
-Perfect CSI (unpractical )
-Mean Feedback (applications with low mobility)
-Covariance Feedback (applications that involve mobile
transmitters and/or receivers)

e T he channel model that is widely used: Flat Fading Sce-
nario which models narrowband applications (Speech)

e Frequency Selective Fading: Models broadband applica-
tions (high data rate, multimedia applications , and oth-
ers) Only Perfect CSI: (Cioffi et. al., SP 03) and Mean
Feedback: (Giannakis et. al., SP 04)



System Model

e MIMO-OFDM frequency selective fading channel model
with M; transmit antennas and M, receive antennas.

e [ he channel impulse response from transmit antenna z to
receive antenna 35 at any time instant = can be modeled

as
L-1

hij (1) = > i (D6 (r—1p), (1)

[=0

e [ he received signal at the n-th subcarrier at receive an-
tenna j5 is given by

y; (n) = &h? (n) b (n) +v; (n), (2)



System Model

In general, the design of the SF-beamformer symbol B is
split into two parts B = WC.

A predesigned SF codeword C

A beamformer (linear transformation) W which is an M; x
M; matrix

We seek the beamformer design W Il
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e Objective: Minimize the average pairwise error probability

Pr(B — B) (3)

e \We can prove that the average pairwise error probability
can be upper bounded by

PEP < [det (%Mtﬁﬂ (Inag, ® |[Un @ W) A (I W) R + L«)]
(4)

e Where R is the square root matrix of the channel corre-
lation matrix Ry, = E {hhH}

R, = RR" (5)
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e \We can state the optimization problem as follows

m\%x f(W) = det <4LM15RH (INMr & [(IN@)W)A (IN®WH)D R

+1r)
s.t. || W|%=1.
(6)

e Is it convex? (Hopefully!)

e A is a positive semi-definite Hermitian matrix that de-
pends on the SF code design

e Relaxation: Assume the matrix A to be identity!
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e [ he optimization problem then reduces to

max f(W) = det (%MtRH (INMT ® [(IN ® W) (IN ® WH)]) R+ L«)

s.t. || W %= 1.
(7)

e Define n = WWH,
Matrix identity (Iy @ A)(Iy @ AH) = Iy @ (AAH)

e [ he optimization problem can be rewritten as follows

P s H ~
= det | —RM (1 I R+1T
max g(n) = de <4Mt (Ina, ® Iy @m)) R+ 7~>

s.t.tr(n) = 1, (8)
n=n"">0.



Nonlinear Programming Concepts

Using the matrix identity In @ (I @ A) = Iny Q@ A

T he objective function can be finally written as

— P pH s
mnax g(n) = det (4—MR (INQMT ® 77) R+ Ir>

s.t. tr(n) =1,
n=n"">0.

First we study the convexity of the feasible region
Let n = Any1 4+ (1 — XN)no, where A € (0,1)

Then we have

(9)

tr(n) =tr(Any + (1 — A)n2) = Atr(n1) + (1 — A)tr(n2)

(10)
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e Substituting n=Xn1 + (1 — X)no in g(n)
_ P nH
g(n) =det (4—MR (INQMT ® (A1 + (1 — >\)772))
xR + L,«)
det (AﬁRH (Iy2a, @) R4 (1 = V2RI (1yay, @ mo)
' /
(11)

e Corollary (Matrix Analysis) For any positive definite
matrices A and B and A € (0,1), the following is true

det [AA + (1 — \)B] > det [A] det [B]} . (12)

e Using this corollary, we get

g(m) > g(n)g(n2) . (13)
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Define ¢q(n) = log(g(n)), then the above equation reduces
to

q(m) > Ag(n1) + (1 = XN)q(n2). (14)

Therefore ¢q(n) is a concave function!

Now we can write the optimization problem again as fol-
lows

_ P nH s
mﬁlx qg(n) = log (det <4—MtR (INQMT ® 77) R+ Ir))

s.t. tr(n) = 1,
n=n"">0.

(15)

This is maximizing a concave function over a convex set
LLocal optima are global optima !



Numerical Solution
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e [0 solve the optimization problem we choose the sequen-
tial quadratic programming (SQP) method.

e Consider solving the following problem

min f(x)

gi(xz) =0, 1<i<me
gi(x) <0, me+1<i<m,
x e R"

(16)

e For a given iteration k, let xz; be an approximation to
the solution, X\, be an approximation to the multipliers,
and B an approximation to the Hessian matrix of the
LLagrangian



we have to solve the following quadratic programming
problem

1
min EdTBkd + V§(xp)!d

s.t. Vgi(zg)'d+ gi(zr) =0, 1 <i<me, (17)
Vgi(zp)td+ gi(z) <0, me+1<i<m,

Let d;. be the optimal solution of the above subproblem
and pp the corresponding multipliers, then the next iter-
ation is formulated as follows

x x d
=Gl ) o

SQP is implemented in the Matlab optimization toolbox
by the function 'fmincon’



Numerical Solution 13

e In the simulation experiments, the square root of the
channel covariance matrix was taken to be

fH _ | —0.6918 1.2540 -1.4410 -0.3999 0.8156 1.2902
~ | —1.5937 0.5711 0.6900 0.7119 0.6686 —1.2025 -
(19)

e T he matrixnisa 2x2 symmetric matrix, i.e. 3 unknowns.

e [ he cost function can be simplified as follows

g(n) =109(13.57 xn(1,1)% — 5.8645 x n(1,2)? 4+ 9.88 x n(2,2)% — n(
+28x%n(1,1) *n(2,1) +10.75 % n(1,2) *n(2,1) + (4/SNR)

+0.8572 % n(1,2) +6.88 % n(2,1) + 1)).
(20)



e \We tested the algorithm at more than initial point and
they all gave the same result as follows

xo = [0.5,0,0.5];

zo = [1,0,0]; (21)
zo = [0, 0, 1],

xo = [0.2,0,0].

The optimal solution at any of the above initial conditions
Was

n(1,1) = 0.3416, n1(1,2) =0.4742, n1(2,2) = 0.6584.
(22)

e [ he above answer was at SNR = 100. We changed the
SNR to check the sensitivity of the optimal solution to
changing the SNR.



e \We considered SNR = 10 and the results were

n2(1,1) = 0.3614, 1>(1,2) = 0.4804, n>(2,2) = 0.6386.
(23)

e [ hus the optimal solution is not sensitive to the variations
in the SNR.

e Although this phenomenon was only checked for this spe-
cific example, it is intuitive to generalize it.



Conclusions and Future work
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We studied the problem of optimal transmitter design in
the presence of partial channel state information

We formulated the problem as a non-linear optimization
problem where the objective function is an upper-bound
on the system pairwise error probability and the con-
straints are on the system energy

Under a relaxation on the objective function, we prove
that the optimization problem is convex

We utilize the sequential quadratic programming methods
to solve the problem

Future Work



